Combining Speed of Delivery
and Quality in Complex Systems

Manuel Pais | DevOps & Delivery Consultant
(@manupaisable | manuelpais.net

About me

Manuel Pals
S Software Eng HF,

@manupaisable
Mmanuelpals.net
manuel.pais@gmall.com

DevOps and Delivery Consultant
Focused on teams and flow

) ¢

http://www.manuelpais.net/
mailto:manuel.pais@gmail.com

About me

Co-author;

Team Guide to
Software Releasability

by Chris O'Dell & Manuel Pals S

releasabilitybook.com

) ¢

About me) ¢

}i | DevOps Topologics Anti-Types Team Topologies

What Team Structure is Right
for DevOps to Flourish?

O

Agenda ¥

1. The Need for Speed (aka DevOps)

2. Fallure = Quality In Complex Systems

3. Survival of High-Performing Cultures

2001: Agile Manifesto ¥

@ ACILE MANITESTO

® IND!'VIbUALS & IENTERACTIONS |
OVER PROCESSES & Tools

® WORKING- SOFTWARE OVER

COMPRE HENSIVE DoCY MENTATION
©® COSTUMER (OLABORATION OVER
CON TRACT NEGOMATION

® RESPONDING T0 CHANGE OVER
N | followne A PLAN

S P
> SR

Java / Web
Developer

Agile... Scrum

)} AGILE MAN\RESTO

o IND'WVIbUALS & IENTERACTIONS
OVER PROCESSES & Tools
©® WORKING- SOFTWARE OVER
COMPREHENSIVE DoCv MENTATION
® COSTUMER COLABORATION OVER
CONTRACT NEGOMATI\ON

® RESPONDING TO CHANGE OVER
foLlow NG A PLAN

Agile... Scrum

24 h

3 AGILE MAN\RESTO

o IND!VIbUALS & IENTERACTIONS |
OVER PROCESSES & ToolS

©® WORKING- SOFTWARE OVER
COMPREHENSIVE DoCv MENTATION

© COSTUMER COLABORATION OVER
CONTRACT NEGOTMAT\ON

® RESPONDING TO CHANGE OVER
ﬂ followne A PLAN

30 days

=)

Product Backlog Sprint Backlog Sprint

Working increment
of the software

Scrum, Scrum, Scrum .

m BBBBBB ' '
: : Working increment
Sprint of the software

aaaaaaaaaaaaaaaaaaaaaaaaaaa

Scrum, Scrum, Scrum

>h
>h

24 h
m 30 days
Product Backlog Sprint Backlog Sprint Working increment
of the software
24 h
m 30 days
Product Backlog Sprint Backlog Sprint Working increment

of the software

Scrum, Scrum, Scrum

>h
>h

24 h
m 30 days
. . Working increment
Product Backlog Sprint Backlog Sprint of the software
24 h
m 30 days
. . Working increment
Product Backlog Sprint Backlog Sprint of the software
24 h
m 30 days
Product Backlog Sprint Backlog Sprint e aoftvement

of the software

>>

Scrum, Scrum, Scrum

>h
>h

24 h
m 30 days
. . Working increment
Product Backlog Sprint Backlog Sprint of the software
24 h
m 30 days
. . Working increment
Product Backlog Sprint Backlog Sprint of the software
24 h
@ 30 days
Product Backlog Sprint Backlog Sprint e aoftvement

of the software

>>

Working increm« Working increment
of the softwarc of the software

A

Scrum, Scrum, Scrum

>h
>h

24 h
m 30 days
. . Working increment
Product Backlog Sprint Backlog Sprint of the software
24 h
m 30 days
. . Working increment
Product Backlog Sprint Backlog Sprint of the software
24 h
m 30 days
Product Backlog Sprint Backlog Sprint e aoftvement

of the software

>>

Working increm« Working increment
of the softwarc of the software

f o

Wall of confusion

Froduct ownesr

. Testers

Developers

|-

Clurmsy Com mumlcation

S

Systermn administrators

Cuick Teadback wWwall of confusion Network administrabors
loop Catabase administrators
Exacutives

Circle of happimess '

Java / Web
Developer

2009: DevOps

/\ AVALON
28\ BIOMETRICS

EUROCONTROL Carnegie
. Mellon
Build QA University LSQ d

) ¢

“DevOps brought to the attention
that two worlds, typically apart in a
company, need to collaborate and
that actually glves youa Ba <
competitive edge”

—Patrick Debois

infoq.com/lnterwews/debois—devops

A

WHAT IS

Vhgge

Culture
Automation
Lean

Measurement

Sharing

e Focus on People
« Embrace Change & experimentation

e “Continuous Delivery”
e “Infrastructure as Code”

e Focus on producing value for the end-user
« Small batch sizes

e Measure everything
« Show the improvement

e Open information sharing
e Collaboration & Communication

) ¢

Agile... Scrum... DevOps

AGILE MAN\RESTO

o INDIDUALS & IENTERACTIONS
OVER PROCESSES & Tools

® WORKING- SOFTWARE OVER
COMPREHENSIVE DoCy MENTATION

© COSTUMER (OLABORATION OVER
CONTRACT NEGOTMATION

© RESPONDING T0 CHANGE OVER
followine A PLAN

Agile... Scrum... DevOps

AGILE MAN\RESTO

o INDIDUALS & IENTERACTIONS
OVER PROCESSES & Tools

® WORKING- SOFTWARE OVER
COMPREHENSIVE DoCy MENTATION

© COSTUMER (COLABORATION OVER
CONTRACT NEGOTMATION

© RESPONDING T0 CHANGE OVER
followine A PLAN

24 h

30 days

Sprint Backlog

Product Backlog

. Working increment
Sprint of the software

Agile... Scrum... DevOps

AGILE MAN\RESTO

o INDIDUALS & IENTERACTIONS
OVER PROCESSES & Tools

® WORKING- SOFTWARE OVER
COMPREHENSIVE DoCy MENTATION

© COSTUMER (COLABORATION OVER
CONTRACT NEGOTMATION

© RESPONDING T0 CHANGE OVER
followine A PLAN

24 h

30 days

Sprint Backlog

Product Backlog

. Working increment
Sprint
P of the software

“Agile System Admmlstratlon was
too long and too narrow... ",

—Patrick Debois

infog.com/interviews/debois-devops

A

DevOps

From Wikipedia, the free encyclopedia

DevOps (a clipped compound of "development” and "operations”) is a culture, movement or practice that emphasizes the
collaboration and communication of both software developers and other information-technology (IT) professionals while
automating the process of software delivery and infrastructure changes.[1Z] |t aims at establishing a culture and environment
where building, testing, and releasing software, can happen rapidly, frequently, and more reliably. B[]

2010: Continuous Delivery .

AAAAAA
BIOMETRICS

SKELTON THATCHER
EFFECTIVE SOFTWARE OPERATIONS

QA DevOps
Lead Consultant

EURCCONTROL Carne gic

Java / Web Build QA %ﬁggll}sity

Developer Manager Engineer

A

“ability to get changes of all types,
into production, or into the hands
of users, safely and quickly in a
sustainable way”

I bl Wy Sipntre S |

e —Jez Humble

Jez Humste ? .
Davip Fariey ?“ .

Fornsord by Martix Fowler

continuousdelivery.com

atinuous De'ivefy checklist template @ Skelton Thatcher Consulting ¢ @ Public 3

"&

README Part 1 - Foundations Part 2 - The Deployment
Al = Pipeline

About this board @ 3
Chapter 1: The Problem of Delivering

= Software

Chapter 5: Anatomy of the

= AS Deployment Pipeline
Chapter 2: Configuration —
Chapter 6: Build and Deployment

4 S Management

Scripting
4 n 312

Chapter 3: Continuous Integration = o=
0 Chapter 7: The Commit Stage
=

Chapter 4: Implementing a Testing
Strategy

Chapter 8: Automated Acceptance
Testing

Chapter 9: Testing Nonfunctional
Requirements

) _ [
Version History

Applications

e

Chapter 10: Deploying and Releasing

& T

Part 3 - The Delivery Ecosystem ‘ ”:t:'.,.n»_;.&.‘

D

Chapter 11: Managing Infrastructure
and Environments

Chapter 12: Managing Data

Chapter 13: Managing Components
and Dependencies

_ s
Chapter 14: Advanced Version -
Control

Chapter 15: Managing Continuous -~
Delivery '

Id & unit

' Verslon control l Bul

Dellvery team

Check in
Check in

2 S

Credits: Jez Humble, Martin Fowler, Tom Sulston, Sam Newman

Agenda ¥

1. The Need for Speed (aka DevOps)

2. Fallure = Quality In Complex Systems

3. Survival of High-Performing Cultures

R
Y,

SR

'
Y

Q) _ “f\.\v -“' .ﬁ.
\ | . ""._‘
! I ‘ A
- AT b
1 _‘,_‘ e?_:.» -'[::: __I

Al B "

B

¥
~

I
".F,'i.
(\ foy

A ~ oy 2
) ‘.\\'.bl ’ ’, 7

waw
g .
- KA et U
’ D = s e A
e T e . e B : -
1 7-:1-.;':.')" p .:~._»‘.»;' D3] ‘ "
LIt ™ H v) et

INTE

Le -]

=5=0PEN-
= SOFTWAR i

-

PUELIC
COPTRIGHT -

LhEsS

z = £ =
g w B = T S
. ===
- = ST
TLT] L 1 % ;—-E it
==
i
=

L]

B SUSERS S MO

; ﬂ;ﬁ '!!:ﬂwlmmsu“RcE;ﬂ-“ﬁ[{-”{E :
- F_R tE TR E
2

o
4.

s
(=1

Fix

=
v

OPEN- .
FIWARE = ..

m 1))

) i |
3

PUBLIC =2 S
COPTRIGHT =

[o & i
E i = i S
- == ks
- i = d % S = me
==L
Lt
=

L]

71 SOURCE e =
- ' o=
= CODE § = %

i e SERS oML

o
4.

(=1

Fa

N

INTE

Le -]

Y ﬂ EN .
PUELIC == FTWAREH
COPTRIGHT = [T

85

CC

E = £ =
= i e = TS,
i E e T :l. -=.-
.- = 7]
AN ; - .I % :;-. E : .-I
=
i
=

L]

st (HFORMATICH AVAILABLE 7 5= §
FE FRITNE i |
= FREES““REE 'EE"][,Eﬂé--i =
L —
(==}

S gIGERS monmuL | ¢

o
4.

s
(=1

Fia

Systems of systems
Complex run time dependencies
\Vulnerable build time dependencies
Failure is endemic

Everybody right now.
#AWS #awscloud #awsoutage #awsdown #S3
#AWSs3 #Amazon

us 52 KAESBERJES

11:38 AM - 28 Feb 2017

) ¢

Everybody right now.
#AWS #awscloud #awsoutage #awsdown #S3
#AWSs3 #Amazon

43 502 JdEEERXxdE®
443 592 o Y

11:38 AM - 28 Feb 2017

DevOps
GitHub: We're sorry (again) about
(another) outage

Sky blue, oceans wet, code sharer unstable

By Shaun Nichols in San Francisco 29 Jan 2016 at 19:27 17D

) ¢

SHARE ¥

Everybody right now. }i

#AWS #awscloud #awsoutage #awsdown #S3
#AWSs3 #Amazon

[re—,

QLWL
QLD NN YEWS ng s
-k, ..fu;:'-") DevOps
“5&““":“ GitHub: We're sorry (again) about
(another) outage
Sky blue, oceans wet, code sharer unstable
[By Shaun Nichols in San Francisco 29 Jan 2016 at 19:27 17 D SHARE ¥

443 592 dEEEREXN d0®

British Ai rways system outage 'caused

by IT worker accidentally switching off
power supply’

“The zero-error fallacy” ¥

Researchers at MIT have shown that:

a) the more incidents an airline has, the lower the
passenger mortality risk

https://techbeacon.com/zero-error-fallacy-what-really-counts-devops-teams

https://techbeacon.com/zero-error-fallacy-what-really-counts-devops-teams

“The zero-error fallacy” ¥

Researchers at MIT have shown that:

a) the more incidents an airline has, the lower the
passenger mortality risk

b) construction sites with relatively more incidents in a
given year have tewer worker deaths than those with
zero iIncidents.

https://techbeacon.com/zero-error-fallacy-what-really-counts-devops-teams

https://techbeacon.com/zero-error-fallacy-what-really-counts-devops-teams

IS THE SOFTWARE
SOFTWARE IS NEVER
FINISHED? FINISHED.

@ScottAdamsSays

Dilbert.com

DID YOU
FIX ALL
OF THE
BUGS?

THERE'S
NO WAY
TO KNOW.

I CANT OKAY,
MANAGE THE SOFT—
YOU IF JARE WILL

YOU DONT g PERFECT

LEARN TO 1N 2.3 DAYS.
LIE.

10-02-17 @ 2017 Scott Adamsg, Inc/Dist by Andrews McMeel

Learning from Failure ¥

Greatest illusion is that the difference between excellent
and crappy operations is the number of errors or failures

Learning from Failure ¥

Greatest illusion Is that the difference between excellent
and crappy operations I1s the number of errors or fallures

What makes a difference is the presence of positive
capacities—in people, in teams, in the organization.

Learning from Failure ¥

Greatest illusion Is that the difference between excellent
and crappy operations I1s the number of errors or fallures

What makes a difference is the presence of positive
capacities—in people, in teams, in the organization.

A safety culture is one in which the boss actually invites
bad news, and may even reward it

) ¢

time between faillures
—

time to repair
e ——.

time between faillures
ﬁ

time to repair
O=0

) ¢

) ¢

Development vs Maintenance

) ¢

Develop @ Hintenance

-AM builds, deploys, runs, monitors and fixes
+ Ops provides platform

) ¢

DON

deployea

) ¢

DON

Dded

= monitored in production

) ¢

DON

Dded

- = monitored NOT In production

) ¢

Incident reviews

It’s Not Your Fault
()

pPoOSI=Moriems

http://www.slideshare.net/jhand2/its-not-your-fault-blameless-post-mortems

) ¢

http://www.slideshare.net/jhand2/its-not-your-fault-blameless-post-mortems

3

//

Chaos engineering ¥

You Don’t Choose Chaos Monkey...
Chaos Monkey Chooses You

https://medium.com/netflix-techblog/chaos-engineering-upgraded-878d341f15fa

https://medium.com/netflix-techblog/chaos-engineering-upgraded-878d341f15fa

. . A
Wrong incentives

. . A
Wrong incentives

. .)
Wrong incentives

Rewarding zero defects / fixing defects

~OCUS on simple/single metric

Different IT teams with different goals

Right incentives

)¢

Right incentives

) ¢

Right incentives ¥

Reward along business objectives

Combination of metrics (e.q. lead time + time to repair)

All IT teams share same objectives

. .) ¢
High Performers Are More Agile

30x 200x

more frequent faster lead times
deployments than their peers

Source: Puppet Labs 2015 State Of DevOps: https://puppetlabs.com/2015-devops-report

High Performers Are More Reliable) ¢

60X 168X

the change faster mean time
success rate to recover (MTTR)

Source: Puppet Labs 2015 State Of DevOps: https://puppetlabs.com/2015-devops-report

Agenda

1. The Need for Speed (aka DevOps)

) ¢

2. Fallure = Quality In Complex Systems

3. Survival of High-

Performing Cultures

Culture Types ¥

Pathological (power-oriented) Bureaucratic (rule-oriented) Generative (performance-oriented)

Low cooperation Modest cooperation High cooperation
Messengers shot Messengers neglected Messengers trained
Responsibilities shirked Narrow responsibilities Risks are shared
Bridging discouraged Bridging tolerated Bridging encouraged
Failure leads to scapegoating Failure leads to justice Failure leads to enquiry
Novelty crushed Novelty leads to problems Novelty implemented

source: http://continuousdelivery.com/implementing/culture

http://continuousdelivery.com/implementing/culture/

Pathological (power-oriented)

Low cooperation

Messengers shot Blame Culture

Responsibilities shirked

Bridging discouraged

Failure leads to scapegoating

Novelty crushed

Pathological (power-oriented)

Low cooperation

Messengers shot Blame Culture

Responsibilities shirked

Resistance to Change
Bridging discouraged

Failure leads to scapegoating

Novelty crushed

Pathological (power-oriented)

Low cooperation

Messengers shot Blame Culture

Responsibilities shirked

Resistance to Change
Bridging discouraged

Failure leads to scapegoating Lack of Collaboration

Novelty crushed

Negative

/ Assumption \

£
»
-

Observed ' Self-
. £ h '
aggressive / , protective

behavior /| . behavior
' n
I X |
E The Cycle i
i of Mistrust J
i |
4 y
Self- / Observed
protective . aggressive
behavior N > behavior
\ Negative /
Assumption

Designed by Joshua Kerievsky. Adapted from “Driving Fear Out of the Workplace”

- A — A d " e . R 2 2 - "

 ct— T

Blameless

Generative (performance-oriented)

High cooperation

Messengers trained

Risks are shared

Bridging encouraged

Failure leads to enquiry

Novelty implemented

Blameless

Continuous Learning

Generative (performance-oriented)

High cooperation

Messengers trained

Risks are shared

Bridging encouraged

Failure leads to enquiry

Novelty implemented

Blameless

Continuous Learning

High Collaboration

Generative (performance-oriented)

High cooperation

Messengers trained

Risks are shared

Bridging encouraged

Failure leads to enquiry

Novelty implemented

l!!”l'll[ﬂﬂnn :

http://itrevolution.com/speeding-scaling-devops-enterprise

http://itrevolution.com/speeding-scaling-devops-enterprise

Collaboration vs X-as-a-Service

—_— e
e -

\\ /f’__‘“m\
a a f
| :
;)
—_—
a,_hqq_____;_f-’/
5 . .
: Collaboration X-as-a-Service
I Rapid discovery Ownership clarity
% * No hand-offs E:jj L ess context needed
0
% mmm Comms overheads? mmm Slower innovation?
o

Conclusion H

Generative (performance-oriented)

High cooperation

,\,,a » (Messengers trained
CONTINUOUS o <\ ¢/ P
DELIVERY

Risks are shared

- - F““ e e Bridging encouraged

Failure leads to enquiry

Novelty implemented

T bl Wy Sipontne S |

A ,A

CONTINUOUS
DELIVERY

Jez Humsre

-~

Davip Fariey a5

Conclusion

) ¢

T bl Wy Sipontne S |

e
CONTINUOUS
DELIVERY

Jez Humsre

_— N

Davip Fariey

Conclusion

Process

People

) ¢

Tools

Conclusion

Process

People

) ¢

HOW TO CREATE WORLD-CLASS
AGILITY, RELIABILITY, & SECURITY
IN TECHNOLOGY ORGANIZATIONS

" GeneKim,

Jez Humble,
Patrick Debois,
& John Willis

FOREWORD
BY JOHN ALLSPAW

Jez Humible, Joanna Malesky & Barry ('Redlly

LEAN

ENTERPRISE

How High Performance
Organizations

Innovate at Scale

References

- ﬂ\;’é‘

CONTINUOUS
DELIVERY

Jez HumsLe }- .
Davip Fariey ﬁ :

Thank you!

Manuel Pals
VIS Software Eng (L,

@manupaisable
Mmanuelpals.net
manuel.pais@gmall.com

DevOps and Delivery Consultant
Focused on teams and flow

) ¢

http://www.manuelpais.net/
mailto:manuel.pais@gmail.com

