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Outline  
 
1.  Real-time optimization 

–  Use of real-time measurements to improve process operation 
in the presence of uncertainty 

–  What to measure and what to adapt? 

2.  Three RTO schemes 

–  Update model parameters and repeat numerical optimization 

–  Modify cost and constraints and repeat numerical optimization 

–  Optimization via feedback control 

3.  Two experimental case studies 

–  Solid oxide fuel cell stack  

–  Batch polymerization reactor   
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Optimization of Process Operation 

1.  Features of industrial processes 

–  Complexity 

–  Presence of disturbances 

2.  Operational objectives 

–  Feasibility: respect operational and safety constraints 

–  Optimality: minimize energy, maximize efficiency, maximize productivity 

3.  Performance improvement 

–  On the basis of a model via numerical optimization 
  Difficult in practice because of model inaccuracies, disturbances 

–  Use measurements  real-time optimization  
  What to measure, what to adapt? 

  

uncertainty 
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Optimize the steady-state performance of a (dynamic) process  
while satisfying a number of operating constraints 

Plant 

min
u

φp u,y p( )
s. t. g p u, y p( ) ≤ 0

(set points)"

u!

Optimization of a Continuous Plant!

u  ?"

min
u

Φ(u,θ ) := φ u,y( )                                
s. t. G u,θ( ) := g u, y( ) ≤ 0          

   Model-based Numerical Optimization  

? 

F u,y,θ( ) = 0

(set points)"

u!u  ?"

StOP!
NLP!
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u(t) x p(t f )

Batch reactor with finite terminal time"

min
π

Φ π ,θ( )                                            
s. t. G π ,θ( ) ≤ 0                     

Batch reactor viewed as a static map"

π Φ p

G p
StOP!
NLP!

min
u[0,t f ]

Φ := φ x(t f )( )                                          
s. t. x = F(x,u,θ ) x(0) = x0                                  

           S(x,u) ≤ 0

           T x(t f )( ) ≤ 0

u[0, t f ] = U(π )
Input parameterization 

u(t)"
umax"

umin"
tf!t1" t2"

u1"

0"

t"

DyOP!

Optimization of a Batch Plant 
Repetitive Dynamic Process 
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Outline  
 

1.  Optimization of process operation 

–  Use of real-time measurements for improvement of  process 
operation in the presence of uncertainty 

2.  Three RTO schemes 
–  Update model parameters and repeat numerical optimization 

–  Modify cost and constraints and repeat numerical optimization 

–  Optimization via feedback control 

3.  Experimental case study 

–  Solid oxide fuel cell stack 

–  Batch polymerization reactor   
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Three Approaches for Static RTO 
What to measure and what to adapt?!

Optimization in the presence 
of Uncertainty 

Measurements: 
Adaptive Optimization 

No Measurement: 
Robust Optimization 

u* ∈argmin
u

Φ(u,θ )
s.t. G(u,θ ) ≤ 0

Measure/Estimate   
KKT elements 

and adapt 
Inputs. 

-  self-optimizing control 
-  NCO tracking © LA  
-  extremum-seeking control  

  input update: δu

3 

Explicit methods Implicit method 

Measure/Estimate   
KKT elements 

and adapt 
Cost & Constraints 

- bias update 

-  gradient correction 
-  modifier adaptation © LA !

cost & constraint update: δΦ,δG

2 

Measure 
Outputs 

and adapt 
 Model Parameters 
-  two-step approach 
(repeated identification  
     and optimization) 

 parameter update: δθ

1 
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θ
k
* ∈argmin

θ
J
k
id

J
k
id = y

p
(u
k
∗) − y(u

k
∗,θ)⎡⎣ ⎤⎦

T
Q y

p
(u
k
∗) − y(u

k
∗,θ)⎡⎣ ⎤⎦ s.t. g u,y(u,θ

k
∗)( ) ≤ 0

Parameter Identification Problem Optimization Problem 

uk+1
∗ ∈argmin

u
φ u,y(u,θk∗)( )

  uL ≤ u ≤ uU

Plant"
at"

steady state"
Parameter"

Identification"

Optimization"

uk+1
∗ → uk

∗

θk*

yp(uk
∗)

T.E. Marlin, A.N. Hrymak. Real-Time Operations Optimization of Continuous Processes, 
 AIChE Symposium Series - CPC-V, 93, 156-164, 1997 

Current Industrial Practice  
for tracking the changing optimum 

in the presence of disturbances 

y(uk
*,θk*)

   1.  Adaptation of Model Parameters 
     Two-step approach 
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C
, X

E
, X

G
, X

P

Example of Plant-Model Mismatch 
Williams-Otto reactor 

3-reaction system  
A + B  C 
B + C  P + E 
C + P  G 
 

Objective: maximize productivity 

Model  
   - 4th-order model 
   - 2 inputs 
   - 2 adjustable parameters (k10, k20) 
 

2-reaction model 
 
A + 2B    P + E 
 
A + B + P    G 

k2 

k1 
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Does not 
converge to plant 

optimum 

Williams-Otto Reactor 
"- 4th-order model 

- 2 inputs 
- 2 adjustable par. 
 

  
F

A
, X

A,in
= 1

  
F

B
, X

B,in
= 1

 F = F
A
+ F
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 V

 TR

  XA
, X

B
, X

C
, X

E
, X

G
, X

P

  Two-step Approach 
   With  structurally incorrect model 
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co
ns

tra
in

t v
al

ue
"

Gm(u,θ)

   Gp(u)

 εk

G(u,θ)

λkG [u − uk∗ ]
T 

 u
  uk

∗

uk+1
∗ ∈argmin

u
Φm(u,θ) := Φ(u,θ) + λkΦ [u − uk∗ ]

s.t. Gm(u,θ) := G(u,θ) + εk + λkG [u − uk∗ ] ≤ 0

Modified Optimization Problem 
Affine corrections of cost 
and constraint functions. 
The modified problem  
satisfies the first-order 
optimality conditions of 
the plant  
 

  uL ≤ u ≤ uU

T 

T 

2. Adaptation of Cost & Constraints 
     Input-affine correction to the model 

P.D. Roberts, On an Algorithm for Combined System Optimization and Parameter Estimation, Automatica, 17, 199–209, 1981 

λGk =
∂Gp
∂u
(uk

∗) − ∂G
∂u
(uk

∗,θ)

plant gradients 

A. Marchetti, Modifier-Adaptation Methodology for Real-Time Optimization, I&EC Research, 48, 6022-6033, 2009 
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Example Revisited 
  
F

A
, X

A,in
= 1

  
F

B
, X

B,in
= 1

 F = F
A
+ F

B

 V

 TR

  XA
, X

B
, X

C
, X

E
, X

G
, X

P

Converges to plant 
optimum 

Williams-Otto Reactor 
"- 4th-order model 

- 2 inputs 
- 2 adjustable par. 
 

Modifier adaptation 

A. Marchetti, PhD thesis EPFL, Modifier-Adaptation Methodology for Real-Time Optimization, 2009  

Requires estimation of 
experimental gradient 
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Real Plant 
Measurements ? 

Optimizing 
Controller 

Feasibility ? 
Optimal performance ? 

Disturbances 

Inputs ? 

C
on

tro
l p

ro
bl

em
 Set points ? 

CV ? MV ? 

3.  Direct Adaptation of Inputs 
     NCO tracking © LA       

  Transform the optimization problem into a control problem 

  Which setpoints to track for optimality? 
•  The optimality conditions (active constraints, gradients) 

•  Requires appropriate measurements 

B. Srinivasan and D. Bonvin, Real-Time Optimization of Batch Processes by Tracking the Necessary Conditions of Optimality,  
I&EC Research, 46, 492-504 2007. 

 



17 

Example 
Minimum-time Problem  

• • 
A B 

In minimal time 
V(0)= 0 V(tf)= 0 

Fbrakes ≤ F(t) ≤ Fengine 

Problem: Find the force F(t) that minimizes tf 

v(t) ≤ vmax 

F(t) 

Path constraints: 

v(tf) = 0 x(tf) ≥ xdes Terminal constraints: 
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Optimal Trajectories 

0 
t1 

vmax 

t 

F v 

Fengine 

Fbrakes 

0 
tf 

1 

2 

3 

Fpath(t) 

t2 
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Faster Car 

• • 
A B 

In minimal time 
V(0)= 0 V(tf)= 0 

Fbrakes ≤ F(t) ≤ Fengine 

Problem: Find the force F(t) that minimizes tf 

v(t) ≤ vmax 

F(t) 

Path constraints: 

v(tf) = 0 x(tf) ≥ xdes Terminal constraints: 
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Effect of Uncertainty 

0 
t1 

vmax 

t 

F v 

Fengine 

Fbrakes 

0 
tf t2 

1 

2 

3 

Fpath(t) 

Parameterized optimal input"
•  3 arcs: Fengine,vmax and Fbrakes"
•  2 switching times: t1 and t2"

… that is structurally identical !!
Different Solution 
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Generation of a Solution Model 

First-principles 
modeling 

Numerical 
optimization 

Prior knowledge 
Experimental data  

Process model 

Interpretation 
Approximations 

Robust 
solution model 

Nominal  
optimal solution 

Parameterized  
optimal inputs 

wrt. plant-model mismatch and disturbances  

O
ff-

lin
e 

Robust ? 

Candidate  
solution model  

Yes 

No 

Optimal  
plant inputs 

O
n-

lin
e 

Adjustment of  
input parameters 

Measured/estimated 
optimality conditions 
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Outline  
 
1.  Optimization of process operation 

–  Use of real-time measurements for improvement of  process 
operation in the presence of uncertainty 

2.  Three RTO schemes 
–  Update model parameters and repeat numerical optimization 

–  Modify cost and constraints and repeat numerical optimization 

–  Optimization via feedback control 

3.  Experimental case studies 

–  Solid oxide fuel cell stack (modifier adaptation)  

–  Batch polymerization reactor (NCO tracking)  
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1. Solid Oxide Fuel Cell Stack 
  RTO via Modifier Adaptation © LA 

 
 

  Stack of 6 cells, active area of 50 cm2, metallic interconnector 
  Anodes : standard nickel/yttrium stabilized-zirconia (Ni-YSZ) 
  Electrolyte : dense YSZ.  
  Cathodes: screen-printed (La, Sr)(Co, Fe)O3 
  Operation temperatures between 650 and 850◦C.  

cathode anode 
H2O 
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Experimental Features 
 !

  Objective: maximize electrical efficiency"

  Meet power demand that changes unexpectedly"

  Inputs: flowrates  of H2 and O2, current "

  Outputs: power density, cell potential"

   Time-scale separation"
•  slow temperature dynamics, treated as process drift !  !

•  static model (for the rest)!

  Inaccurate model in the operating region (power, cell)"

G.A. Bunin, Experimental Real-Time Optimization of a Solid Oxide Fuel Cell Stack via Constraint Adaptation, 
Energy, 39(1), 54-62, 2012 
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max
uk

η u
k
,θ( )

s.t. p
el
u
k
,θ( )+ εk−1pel = pelS

U
cell
u
k
,θ( )+ εk−1Ucell ≥ 0.75V

ν u
k( )≤ 0.75

4 ≤ λ
air
u
k( )≤ 7

u
1,k
≥ 3.14mL/(min cm2)

u
3,k
≤ 30A

uk =

u1,k = nH2,k
u2,k = nO2,k
u3,k = Ik

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

εk
pel = 1-Kpel( )εk-1pel +

Kpel
pel,p,k − pel uk,θ( )⎡⎣ ⎤⎦

εk
Ucell = 1-KUcell( )εk-1Ucell +

KUcell
Ucell,p,k −Ucell uk,θ( )⎡⎣ ⎤⎦

Strategy for Online Optimization 

Repeated Numerical Optimization 
•  Solve a static optimization problem every 10 sec 
•  Apply the optimal inputs to the stack 
•  Measure the resulting constraint values 
•  Adapt the modifiers      to match the active constraints 	
ε

to avoid steep  
thermal gardients 

to avoid  
cell degradation 

to avoid local  
fuel starvation 
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Experimental Results 
 

  Random power changes every 5 min"
  RTO every 10 s, matches the active constraints at steady state"

! maximal λair
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  Industrial features"
•  1-ton reactor, risk of runaway"

•  Initiator efficiency can vary considerably"

•  Several recipes!

  different initial conditions!

 different initiator feeding policies!

  use of chain transfer agent!

 use of reticulant"

•  Modeling difficulties"
•  Uncertainty"

  Challenge: Implement (near) optimal operation for various recipes 

 2. Optimization of Polymerization Reactor 
     NCO tracking © LA  

G. François et al., Run-to-run adaptation of a semi-adiabatic policy for the optimization of an  
industrial batch polymerization process, I&ECResearch, 43, 7238-7242 (2004) 
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Industrial Practice  

Tr(t) to minimize the batch time ?"
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tsw"

t"

Tr(t)"

Tr,max"

Tr,iso"

tf"

1"

2"Heat removal 
≈ isothermal 

Compromise 
≈ adiabatic 

Strategy for Run-run Optimization 

Polymerization"
reactor"

Tr(tf) 

Run-to-run"
controller"

Tr,max - 

tsw 

Tendency model 

Optimality is linked with meeting the most restrictive constraint  Tr(tf) = Tr,max 

Strategy: Manipulate tsw on a run-to-run basis to force Tr(tf) at Tr,max 
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Industrial Results 

Final time"
•  Isothermal: 1.00 "
•  Batch 1:      0.78"
•  Batch 2:      0.72"
•  Batch 3:      0.65"

1 

isothermal 
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Conclusions 

  Key challenge is estimation of plant gradient 
o  Use of successive operational points  BFGS-type of scheme 

o  Dual RTO 

  Process models are often inadequate for optimization  
   use real-time measurements for appropriate adaptation 

  Which measurements to use? How to best exploit them? 
o  Outputs: easily available, not necessarily appropriate  KKT elements 

o  KKT modifiers allow meeting KKT conditions 
  modifier adaptation© LA  (explicit optimization) 

  NCO tracking© LA  (implicit optimization) 
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