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Classical Classification of the path planning
algorithms

Figure: Classification of the current path planning approaches.

Classic classification but a little confusing



Path planning algorithms
From another point of view

According the way of searching to obtain the path, path planning
algorithms can be classified as :
• Graph based methods, the path is obtained after a search in a graph.
• Surface based methods, the path is obtained using a gradient
optimization method.



Graph based methods
Scheme



Surface based methods
Scheme



Graph based methods
Deterministic

Those methods operates in two steps:
• In the first step an adjacency graph of the free areas of the
environment is built and

• In a second step the connectivity graph is searched to obtain the
minimum cost path to go from one node to other in the graph.

• Different methods can be included in this category:
• Visibility graphs.
• Delaunay triangulation.
• Decomposition (trapezoidal) methods,
• Voronoi graph methods,
• Dijkstra, A*, D*, Incremental A*, and D* Lite.
• ...



Grid based methods
Triangulation methods

Figure: Triangulation, induced graph and shortest path



Grid based methods
Visibility graphs



Grid based methods
Decomposition methods



Grid based methods
Voronoi diagrams



Graph based methods
Sampling based

A particular case of the graph based methods are the so called sampling
based methods
• In these methods the adjacency graph is built by using some kind of
sampling strategy to decide the candidate new points to be included
in the adjacency graph.

• Depending on the strategy used to obtain the sampled points there
exists different methods:
• PRM (probabilistic roadmap method) and
• RRT (Rapid Random Tree).



Grid based sampling methods
PRM



Grid based sampling methods
RRT



Surface based path planning methods

Surface based methods also operates in two steps:
• In the first step a cost surface is generated. Typically defined such
that the minimum cost point is located in the goal point.

• And in a second step a continuous path is obtained using a gradient
descend technique to move from the initial point to the goal one.

• The cost surface is calculated at the points of a grid (which implicitly
establish an adjacency scheme) but those methods operates in a
continuous mode letting the robot move freely through the surface
without being restricted to the edges that connect the grid cells.



Surface based methods

Between this family of methods we can include:
• Artificial potential fields. The robot is treated as an electric charge

moving under a potential field in which the obstacles have the same
charge, so they repeal the robot from them. The goal point has the
opposite charge, attracting the robot towards it. The main drawback of
this approach is that it is prone to local minima and oscillations.

• Harmonic functions. It can be considered an evolution of potential
methods, but based on the solution of the Laplace equation. This
equation holds for the steady temperature in an isotropic medium or
electrostatic potentials at points of space. The main drawback of this
approach is that it is prone to quantization effects and it is slow.

• The Fast Marching Method . In this case, the cost for each node is
related with the time a propagating wave takes to reach that node.



Surface based methods
Artificial potentials

Figure: Latombe book



Surface based methods
Harmonic functions



Surface based methods
Harmonic functions: boundary conditions effect



Eikonal equation in path planning



Eikonal equation

• The eikonal equation appears in problems of wave propagation. It is
derivable from Maxwell’s equations of electromagnetics, and provides a
link between physical (wave) optics and geometric (ray) optics.

• In Geometrical Optics, Fermat’s least time principle for light propagation
in a medium with space varying refractive index η(x) is equivalent to the
eikonal equation .

• This equation is also known as Fundamental Equation of the Geometrical
Optics.

• The eikonal (from the Greek eikon, which means image). Constant values
of the eikonal represent surfaces of constant phase, or wavefronts.

• The normals to these surfaces are rays (the paths of energy flux).



Eikonal equation

• A way to characterize the position of a front in expansion is to compute
the time T , in which the front reaches each point of the space.

• For one dimension the equation for the arrival function T can be
obtained easily from (x distance and the speed F of propagation)
T : x = FT .

• The spatial derivative of the solution function is: 1 = F dT
dx and

therefore the magnitude of the gradient of the arrival function T (x)
is inversely proportional to the speed, 1

F = |∇T |.
• For multiple dimensions, the same concept is valid because the

gradient is orthogonal to the level sets of the arrival function T (x).
• The speed F depends only on the position, then the equation

1
F = |∇T | or the Eikonal equation:

|∇T |F = 1.



Fast Marching Method (FMM)

• The Fast Marching Method (FMM) is a particular case of Level Set
Methods, initially developed by Osher and Sethian (Osher 1988).

• It is an efficient computational numerical algorithm for tracking and
modeling the motion of a physical wave interface (front), denoted Γ.

• Ithas been applied to different research fields including computer graphics,
medical imaging, computational fluid dynamics, image processing,
computation of trajectories, etc.



Fast Marching Method
Idea

• Intuitively, Fast Marching Method gives the propagation of a front wave in
an inhomogeneous media.

• Imagine that the curve or surface moves in its normal direction with a
known speed F . The objective would be to follow the movement of the
interface while it evolves.

Wavefront propagating with velocity F (a), and arrival function T(x), for an unidimensional wavefront (b).



Eikonal equation

Figure: Propagation of a wave and the corresponding minimum time path
when there are two media of different slowness (diffraction) index. (a), the
same with an vertical gradient (b).



Fast Marching Method
Interface propagation

• The wavefront is called the interface and can be a flat curve in 2D, or a surface
in 3D (can be generalized to n dimensions). The method calculates the time T
that a wave needs to reach every point of the space.

• We assume that the front Γ evolves by motion in the normal direction of the
front.

• The speed, denoted F , does not have to be the same everywhere, but it is
always non-negative. At a given point, the motion of the front is described by
the equation known as the Eikonal equation:

1 = F (x)|∇T (x)|

where x is the position, F (x) the expansion speed of the wave at that position,
and T (x) the time that the wave interface requires to reach x .

• The magnitude of the gradient of the arrival function T (x) is inversely
proportional to the velocity:

1
F (x)

= |∇T (x)|



Fast Marching Method
Interface propagation

• The T (x) function originated by a wave that grows from one single point
presents only a global minima at the source and no local minima.

• As F (x) ≥ 0 ∀x the wave only grows (expansion), and hence, points farther from
the source have greater T . A local minima would imply that a point has a T
value lesser than a neighbourg point which is nearer to the source. This is
impossible as this neighbourg must have been reached by the wave sooner.



Fast Marching Method
Interface propagation solution

• Due to the front can only expand (F (x) ≥ 0 ∀x), the arrival time T (x) is
single valued. Sethian proposed a discrete solution for the Eikonal equation.

• In 2D the space is discretized using a grid map, denoting by i , j the row i and
column j of the grid map that corresponds to a point p(xi , yj ) in the real world.
The discretization of the gradient ∇T (x) drives to the following equation:

max(D−x
ij T , 0)2 + min(D+x

ij T , 0)2 + max(D−y
ij T , 0)2 + min(D+y

ij T , 0)2 =
1

F 2
ij
(1)

or to the one proposed by Sethian, simpler but less accurate:

max(D−x
ij T ,−D+x

ij , 0)2 + max(D−y
ij T ,−D+y

ij , 0)2 =
1

F 2
ij

(2)

where:
D−x

ij =
Ti,j−Ti−1,j
4x

D+x
ij =

Ti+1,j−Ti,j
4x

D−y
ij =

Ti,j−Ti,j−1
4y

D+1
ij =

Ti,j+1−Ti,j
4y

(3)



Fast Marching Method
Interface propagation

• and 4x and 4y are the grid spacing in the x and y directions.

• Substituting Eq. 3 in Eq. 2 and letting

T = Ti,j
T1 = min(Ti−1,j ,Ti+1,j )
T2 = min(Ti,j−1,Ti,j+1)

(4)

• we can rewrite the Eikonal Equation, for a discrete 2D space as:

max
(

T − T1

4x
, 0

)2
+ max

(
T − T2

4y
, 0

)2
=

1
F 2

i,j
(5)



Fast Marching Method
Interface propagation example

Example of a front propagation:

Video FM.mp4



FM Algorithm

The algorithm has three stages: initialization, main loop, and finalization.

• Initialization : The algorithm starts by setting T = 0 in the cell or cells
that originate the wave. These cells are labeled as frozen. Afterwards it
labels all their Manhattan neighbors as narrow band, computing T (Eq.
5) for each of them.

• Main loop: In each iteration the algorithm will solve the Eikonal Equation
(Eq. 5) for the Manhattan neighbors (that are not yet frozen) of the
narrow band cell with the lesser T value. This cell is then labeled as
frozen. The narrow band maintains an ordered list of its cells. Cells are
ordered by increasing T value (first cells have lesser T values).

• Finalization: When all the cells are frozen (the narrow band is empty) the
algorithm finishes.



Example 1
Origin: one point

Wave source 
T(i0,j0)=0

Frozen cells i,j 
with T(i,j) > 0   

Unknown cells Narrow band cells

Iteration 1 Iteration 5 Iteration 13 Iteration 21 Iteration 25

Figure: Iterations of the FMM in a 5x5 grid map with one wave source.



Example 2
Source: two points simultaneously

Wave source, T=0

Frozen cells i,j with T(i,j) >  0   

Unknown cells

Narrow band cells

Iteration 2 Iteration 10 Iteration 25  

Iteration 39 Iteration 45

Figure: Iterations of the FMM in a 5x9 grid map with two wave sources.



Algorithm
Initialization



Algorithm
Main loop



Application to path planning

• Consider a binary grid map, in which obstacles are valued as 0, and free space as
1. These values can be taken as the wave expansion speed F over the grid map
(at obstacles, speed is 0 and on free space, wave expansion speed is constant
and equals to 1).

• To compute the path between two points p0 and p1 we expand a wave from p1
until it reaches p0.

• Due to the wave expansion properties, the path followed by the wave interface
will be always the shortest trajectory in time and due to speed is constant, this
trajectory is also the shortest solution in distance.

• The wave is originated from the target point, hence, the computed T (x) field
will have only one minima at the target point. Hence, following the maximum
gradient direction from the initial point we will reach the target point, obtaining
the trajectory.



Example

T

Figure: Steps of the FMM applied to path planning.

• Binary map (3D laser range sensor projected on 2D). The obstacles (labeled as
0, black points) are dilated by the maximum radius of the robot. Then, the
FMM is applied using the goal point as a wave source. Once the interface Γ has
reached the start point the algorithm stops expanding.



Path determination
Maximum gradient

• The resulting grid map stores at any pixel the time T required to reach
that pixel.

• The isocurves are the points that have been passed through at the same
instant of time (the front wave) and the maximum gradient direction at
any point is the normal direction to the isocurve.

• To obtain the path between the initial and the goal points we follow the
maximum gradient direction starting at the initial point until goal.



Problems

• The trajectories generated are optimal according to the minimal Euclidean
distance criterion.

• Highly unsafe, the path is too close to the obstacles, this can be alleviated
by growing the obstacles in a pre-specified distance (at least the radius of
he robot) but this solution is inefficient (particularly in doors or narrow
crossings).

• The trajectories generated are not smooth.

• These facts turn FMM into an unreliable path planner for most robotic
applications.

• But ... these problems can be solved while maintaining its advantages.



How to avoid these problems

• Basic idea:

• Play with the refraction index
• We determine a refraction index that is the maximum allowable

speed by the robot at that point of the map.
• This works as a kind of viscosity, the robot moves faster when is far

from the obstacles and slower when is close to them.

• This two step approach gives us some substantial advantages:

• The robot path is safer, due to it separates from obstacles decreasing
the collision risk.

• The robot path is faster (not necessarily shorter in distance, but
shorter in time).

• We obtain not only the path plan but also the motion plan, that
means we have the points of the path and the speed at that points.



Fast Marching Square (FM2)
Method idea

• Starting with the evidence grid map in which obstacles are labeled as 0
and free space as 1.

• Applying the FMM to this map being the obstacles surface the generator
of a wave source (hence, several waves are expanded at the same time).

• The map resulting represents a kind of scalar (potential) field. As pixels
get far from the obstacles, the computed T value is greater. This map
can be seen as a velocities map or a refraction map.

• If we consider the T value as a measure proportional to the maximum
allowed speed of the robot at each point, we can appreciate that speeds
are lower when the pixel is close to the obstacles, and greater far from
them.



Fast Marching Square
Basic

Figure: Time arrival map to each cell (c), maximum gradient directions map
and the shortest time path following the maximum gradient at each point(d).



Fast Marching Square FM2

Path

T

Figure: Steps of the FM2 applied to path planning.



Fast Marching Square FM2

Velocity profile
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Figure: Velocity profile of the path shown in previous figure.



Fast Marching Square FM2

Comments

• The FM2 method is analogous to the Geometric Optics where light
rays (trajectory in FM2) travel in curved trajectories in media with
changing refraction index (velocities map).

• Therefore, time optimality is justified by the principle of Fermat:
Light travels the path which takes least time.

• As a final remark, the FM2 does not require to dilate the obstacles,
since it is going to compute a very safe path for the robot.

• However, the binary map could be dilated before computing the
velocities map.

• But, .. is not completely logical



Saturated Fast Marching Square Method

• In most scenarios the trajectories provided by FM2 are neither logical nor
optimal, even though the quality of the trajectory in terms of smoothness
and safety is always good.

• The FM2 computed trajectory tries to keep the trajectory as far as
possible from obstacles.

• This computed trajectory is similar to the path computed with the
Voronoi diagram. But there are environments in which there is no need to
follow a trajectory so far away from obstacles, as distance may be safe
enough to navigate.

• To solve this a saturated variation of the velocities map can be used. The
scaling of the map is made according to two configuration parameters:

• Maximum allowed speed, which is the maximum control speed the
robot may receive.

• Safe distance, which is the distance from the closest obstacle at
which the maximum speed can be reached.



Saturated Fast Marching Square Method

Figure: Results of the saturated version of FM2: Saturation level: 0.3.



Saturated Fast Marching Square Method

Figure: Results of the saturated version of FM2: Saturation level: 0.6.



Saturated Fast Marching Square Method

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.2

0.4

0.6

0.8

1

Path waypoints

V
e
lo

c
it
y
 r

e
fe

re
n
c
e

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.2

0.4

0.6

0.8

1

Path waypoints

V
e
lo

c
it
y
 r

e
fe

re
n
c
e

Figure: Velocity profiles of the paths: saturation levels of 0.3 and 0.6



Fast Marching Method
Application to 2 -1/2 D path planning

Figure: Elevation map and triangulation

Cost parameters: A elevation, G gradient and Sv spherical variance.



Fast Marching Method
Application to 2 -1/2 D path planning

Figure: Shortest geodesical path



Fast Marching Method
Application to 2 -1/2 D path planning

Figure: Other paths according different cost criteria



Fast Marching Method
Application to 2 -1/2 D path planning

Figure: Other cost criteria



Applications

• 3D planning
• 2D / 3D robot formations
• UAVs
• Path learning

Videos –>



Fast Marching Square
Limitations

• Fast Marching square is basically a fast marching method that uses a
scalar field as a speed limit or as a difficulty to the motion. That
originates a different propagation speed at each cell.

• In spite of each cell has a different propagation speed it is assumed the
isotropy of the medium at each cell, that means the propagation speed at
each cell is identical for all motion directions.

• However there exists situations where this isotropy is neither valid nor
convenient.

• Solution —> introduce anisotropy —> FMVF



• Fast Marching Method subject to a Vectorial
Field (FMVF)



Fast Marching Method subject to a
Vectorial Field (FMVF)

• The general idea is determine the minimum time path through an
environment subject to two different functions affecting the motion:
an escalar function (the viscosity) and a vectorial function.

• Each cell in the map is affected by a cost function of the form:

ft = fs + fv

where:
• The first term fs is the scalar function that represents the cost

function due to the difficulty of the terrain and obstacles , we usually
compute it as f = 1−W being W a cost matrix.

• The second part corresponds to an external vectorial field fv . The
vectorial field has associated, for each cell, a vector, that means a
magnitude a direction.



Fast Marching Method subject to a
Vectorial Field (FMVF)

Anysotropy

• The use of two combined fields a directionally isotropic one (the scalar
field) and another directionally anisotropic (the vectorial field) let us to
cover a wide range of applications.

• Some clear areas of application are vehicles subject to directional
difficulties: currents (sliding, wind or water currents)



Propagation differences
Scalar field vs Scalar plus Vectorial fields

Snapshot of the front propagation moving subject to: a scalar field (left) and a scalar plus a vectorial field (right),
in the center is located a rectangular obstacle

•



FMFV
Example

Path calculated using FMM when there is an external vectorial field.
a) Original binary map of the room. b) Velocities map taking into account the distance to obstacles.

c) and e) Wave expansion (arrival time) with an external field that goes downwards or upwards respectively.
d) and f) Path extracted from the wave expansion.



FMFV
Example 2

Path calculated penalising the change in height, when there is an external field
a) downside, b) upside and c) original map.



FMFV
Example 3

Two different paths in the Mars Gale crater taking into account the lateral sand landslide
proportional to the gradient. a) without landslide, b) with landslide.



FMFV
Example 4

Path calculated using mountains map penalising the change in height,
when there is an external field a) downside, b) upside and c) original map.



Discussion
Advantages of FM

• Optimality.

• Smoothness of the paths (improves the executability).

• Computational cost is excellent for 2/3D case

• Flexibility



Discussion
Disadvantages of FM

• Extension to higher number of dimensions is difficult.

• Extensive evaluation of discretized space.

• High computational cost.



Discussion
Future works, open problems

• Extension to high dimensionality problems. Ongoing.

• Application to Artificial Hand motion planning (learning and planning).
Ongoing.

• Use of level set methods (that admits positive and negative speeds but
requires a much more complex treatment). Ongoing.

• Using uncertainty in the refraction maps to introduce or solve probabilistic
problems. Ongoing.

• Extension to cope vector speed fields . The speed in a point depends not
only of the position but also of the robot pose. Ongoing.



• Questions?



Additional
(1)

Examples of distance maps and trajectories computed over a constant 100x100 cost map (τ = 1) using a
4-connectivity: a) BF, b) A* (using the "Manhattan distance" h4 as an heuristic), c) FM and d) FM* (using the

"Euclidean distance" he as an heuristic) algorithms.

• Difference between Dijkstra and FM.



Additional
(2)

Examples of distance maps computed over a constant cost map using a 4- and 8-connectivity using Dijkstra and a
4- and 8-connectivity using FM.

• Difference between Dijkstra and FM.
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