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Motion control problems of autonomous 
vehicles 

• Point stabilization 

 Design of control laws that stabilize the vehicle at a given target point with 
a desired orientation. 

  

 
T 
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Motion control problems of autonomous 
vehicles 

• Trajectory tracking 

 Design of control laws that force a vehicle to reach and follow a geometric path 
with an associated timing law. 

 Usually, tracking problems for autonomous vehicles are solved by designing 
control laws that make the vehicles track pre-specified feasible “state-space” 
trajectories, i.e., trajectories that specify the time evolution of the position, 
orientation, as well as the linear and angular velocities, all consistent with the 
vehicles’ dynamics 
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Motion control problems of autonomous 
vehicles 

• Path following 

 Design of control laws that force a vehicle to converge to and follow a path that is 
specified without a temporal law. 

  This problem can be expressed by the following two task objectives: 

• Geometric Task : make the position of the vehicle converge to and follow 
a desired geometrical path. 

• Dynamic Task: make the vehicle satisfy a dynamic assignment along the 
path, e.g. the speed of the vehicle converge to and track a desired speed 
assignment (maneuvering) 
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Path Following Algorithms 

• The path following loop is divided in an inner control loop and an outer 
guidance loop. 

 

 

 

Control Guidance 

Navigation 

› The inner loop controller stabilizes the vehicle dynamics  

› The outer loop controls the vehicle kinematics and computes reference commands to the 
inner loop controller, providing path-following capabilities. 

› If there is adequate frequency separation between the guidance and control systems the 
combined scheme will perform as specified separatelly. 

›This structure is the usual one when the vehicle comes equipped with an autopilot. 
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Path Following Algorithms 

• Integrated guidance and control are designed simultaneously 

  

Guidance 
& 

Control 

Navigation 

A survey of control and guidance and control algorithms for vessels can be found in: 
 
Automática marina: una revisión desde el punto de vista del control 
J. M. de la Cruz García , J. Aranda Almansa, J.M. Girón Sierra,  
Revista Iberoamericana de Automática e Informática industrial RIAI,  
vol. 9, pp. 205-218, 2012. 9 



Paths 

• A waypoint path is an ordered sequence of waypoints:  

    W ={w1, w2,..., wN},   

 wi = (wn,i , we,i , wd,i )
⊤ ∈ R3  or    wi = (wn,i , we,i)

⊤ ∈ R2 

wi-1 

wi 

wi+1 

wi+2 

10 



Dubins Paths 

• For a vehicle with kinematics  

 

 
 moving at constant speed V the time-optimal path (shortest path) 

between two different configurations is a path formed by straight-lines 
and circular arc segments. 
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Parametrized Path 

• A parametrized path is a geometric curve pd() parametrized by a continuous 
path variable . 

   pd(s) = [xd(), yd(), zd()]T    or    pd() = [xd(), yd()]T  

• Given a set of waypoints W ={w1, w2,..., wN} a parametrized path can be 
generated using spline or polynomial interpolation methods.  

 

– Example: Cubic polynomial for pd()  R2 
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Parametrized Path: Reference Trajectory 

• The time independent path can be transformed to a time varying 
trajectory by defining a speed profile along the path, Vd (t),  
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Simulink model for path generation 
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Outer guidance controllers for path following 

• PID controllers 

• Virtual Point Tracking 

• Line of Sight Guidance 

• A Streamlined Nonlinear Path Following Kinematic 

Controller 
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PID Controller 
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Problems 
-Determine gains KP , KD , KI (LQR, root locus, … ) 
-Determine point P  (might be indeterminate) 

Command signal:  
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P 

Virtual Point Tracking: Serret-Frenet Frame 
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Serret-Frenet frame {F} 

- Point P  defines a point on the path where a Serret-Frenet frame {F} is defined. 
{F} plays the role of a virtual point or target that should be tracked by the vehicle Q.  

- P is not the point on the path closest to Q but a point that is made evolved according 
to a conveniently defined control law. 

Q 
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Virtual Point Tracking: Control Signals 
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•  s1 along-track error, y1 cross-track error,   course error 

•  s  lenght that the virtual point has moved along the path 

• (s) path curvature 

•  the path is parametrized by s 
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Virtual Point Tracking: Kinematic Model 

Point Q = [s1, y1]T  in {F} evolves according to the equations 
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Virtual Point Tracking: Kinematic Path Following 
Controller 
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-    is a desired approach angle 

-  K1, K2 are design parameters 

- B   and V  can be  obtained from an IMU 
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Virtual Point Tracking: Approach Angle 
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- The equilibrium point (s1 , y1 ,  )=(0, 0, 0) 
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Line of Sight Guidance: Marine Vehicles* 

- The vehicle velocity vector is  
directed toward a point ahead of 
the direct projection of the craft 
to the tangent, located at a distance 
 > 0.  
 “Practice of good helmsman when 
   steering a boat” 
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- No need to compute the curvature  

  of the path 

* Papoulias (1992), Breivik and Fossen (2004), Børhaugh and Pettersen (2006) 

- The approach angle is now 

- Since  y1   0  for all y1 the previous  

   stability properties are kept. 

- Three design parameters 

    K1, K2 , . 
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Line of Sight Guidance: Air Vehicles 

• Originally developed for missile guidance 

• Introduced by Amidi (1991) for WMR and Adopted for UAVs in Park et al. (2004,2007) 

• A reference point P on the desired path at a constant distance L1 is designated  

• A lateral acceleration command is generated according to the direction of  P 

  relative to vehicle’s velocity 

V

cmda
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Line of Sight Guidance: L1 Guidance Law 
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• The acceleration command is equal to the centripetal acceleration required to follow a circular 

 path that passes through the reference point and is tangent to the vehicle velocity vector 
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Line of Sight Guidance: L1 Guidance Law Properties 
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• The law uses instantaneous ground speed and compensates naturally for wind 

• It has an element of anticipation of the desired path, enabling tight tracking of curved trajectories 

• Only one parameter L1 to tune.  

• Lyapunov stability is proven for tracking circular paths  when L1 < R, and straight lines     

• It approximates a PD controller when following straight-line paths  

• For small perturbations when following a path, the cross track error and course error dynamics 

   behave as a second order system 

• The L1 intercept can be undefined 
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Line of Sight Guidance: L1 Guidance Law Properties 

• If the control law and the natural vehicle dynamics are sufficiently faster than the guidance law,  

no appreciable dynamic interactions between the two schemes should be expected†. 

• If this is not the case stability of  the combined guidance and control law is no longer guaranted†. 

• If the dynamic of the inner control law can be characterized by a time contant il, it can be seen  

   that the guidance system is marginally stable when L = il ,  so it is important to ensure ‡ 

L > il  

   A value of L ≈ 3 il  or  4il  should be chosen to ensure satisfactory transient response. 

 

• L1 can be adapted to the ground speed to keep a constant L
*  

           L2 = L
* Vg 

  with guidance law 

 †Papoulias, 1992, ‡ Curry et al. 2013. 
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A Streamlined Nonlinear Guidance Law* 
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Guidance Law 

• (2a-2b) tryes to bring the cross-track error and 

   the course error to zero 

• ( 3), K > 0,  tryes to make the vehicle follow the 
moving reference point with a constant along-track  
error L. 

• We do not consider a reference point on the 

  path at a distance L from the vehicle, but a 

  desired distance from the vehicle to the 

  reference point on the path  
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*J.M. de la Cruz, J.A López-Orozco, E. Besada-Portas, J-Aranda 
  ICRA 2015. 
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Analysis of the Circular and Straight-Line Path Following 

• If we consider a circular path of radius R = (s)-1 , the stationary conditions yield 

 the relation 

  

*

*

*

1 cos 2ɓ

1 cosɓ

sinɓ
2

KL

V
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
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



• The dimentionless quantity  KL/V is a function of the relation L/R, therefore 

       the stationary point depends only on L  and R and not on V. 

(4) 

•     (4) gives a constraint that determines K   

       adaptively as a function of the present 

       curvature of the path, ground speed and 

       the chosen L. 

•     If the time constant  L = L /V is specified 

       then   K  [2,  4]*1 / L . 
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Straight-Line Path Following 

• Stationary point 

• Dynamics of the along-track error 

  

* * * * *

1 1, 0, 0, 0, .s L y s V      

•     The equilibrium point is Uniformly Global Asymptotically  Stable and  

       Uniformly Local Exponentially  Stable (Lyapunov). 
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• Linearazing the equations of the cross-track error and course error about de e.p. 

       a second order time is obtained with  
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Circular Path Following: Stationary Points 
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Circular Path Following: Linearized system 

• Linearazing the equations of the cross-track error and course error about de e.p. 

       a second order time is obtained with the condition that the vehicle is at a distance  

 L  of the reference point.   
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• The linear system is exponentially stable when 

• The linear system is unstable when 
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•     Dotted curves show the corresponding values obtained by Park et al. 2007 31 



Circular Path Following: Domain of Attractions 

Theorem 1. Consider the autonomous system dx/dt = f(x), x  R2 and let  M  R2 be a compact 

invariant set for the system with only one equilibrium point in its interior and no equilibrium 

points on the boundary. Assume that for each initial condition in M there is a unique solution, 

and that f(x) has continuous partial derivatives in the interior of M. Let J denote the Jacobian 

matrix of the system. Then, if the trace of J is negative and the determinant of J is positive at the 

equilibrium point, the domain of attraction is either the set M or an open set , whose boundary 

is a positively invariant periodic orbit. In the latter case, the limit set of the trajectories not in  

are periodic orbits.  

 

    Corollary. Theorem 1 tells us about the behavior when the hyperbolic equilibrium is stable. 

    If the hyperbolic equilibrium point is unstable, then M contains at least a limit cycle. 
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Circular Path Following: Domain of Attractions 

• Three different situations are found to the equilibrium point we are analyzing 
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•   The kynemtic equations can be written as follows 
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Circular Path Following: Domain of Attractions 

i) 0    L/R   1.6      The kynematic system is UGAS and ULES  

    Phase portrait for L/R = 1,  * = 30 deg,  * = -60 deg.  

       

All trajectories converge to the stationary point. Blue  arrows show the flow vector. 
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Circular Path Following: Domain of Attractions 

 ii) 1.6  <  L/R   1.79      The kynematic system is ULAS and ULES and the  

 domain of attraction is a limit cycle.  
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   Phase portrait for L/R = 1.71.  * = 58.76 deg,  * = -117.52 deg.  

 

Some trajectories converge to the stationary point and the rest to the limit cycle.  
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Circular Path Following: Domain of Attractions 

 iii)  1.7  <  L/R <  2.0      The equilibrium point is stable and there is a stable limit 
cycle  

  Phase portrait for L/R = 1.9.  * = 71.81 deg,  * = -142.62 deg. 
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L/R=1.9, KL/V =2.6245
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SIMULATION: MODEL 

• Kinematic model of the vehicle 

cosɣ
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V V V

x V w

y V w


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wx, wy are the components of the wind in the north and east directions, respectively. 

The inner loop is modeled as a first order lag with time constant . 

In all simulations 

 V =  16 m/s 

   = 1 s 

 wind with constant speed of 8 m/s 

 L = 2*V = 32 m 

 L = 3*V = 48 m 
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SIMULATION: CIRCLE 

Trajectory of the vehicle (green and blue)  
 and the reference point (red) Control signals: V (deg/s) in blue, and ds/dt (m/s) in red 
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SIMULATION: CIRCLE 

Distance of the vehicle to the circle 

When L = 3V the mean following error when the circle has been reaches is  1.0 m 

with standard deviation 1.2 m. 
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SIMULATION: Parameterized Curve 

Maximum separation error at the curves: 0.5 m, 1.5 m, 4 m for L = 2V, 4V, 6V. 

Trajectory of the vehicle (black)  
 and the reference point (red) 

Control signals: V (deg/s) in blue, and ds/dt (m/s) in red 
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Aplications 
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