Control de robots y sistemas multi-robot basado en visión

Ciclo de conferencias
Master y Programa de Doctorado en "I ngeniería de Sistemas y de Control"

UNED - ETS I ngeniería I nformática
April -2014

Colaboradores:
Gonzalo López Nicolás
Héctor Manuel Becerra
Rosario Aragüés
Eduardo Montijano
Miguel Aranda

Carlos Sagues
Universidad de Zaragoza
http:/ / www.unizar.es/ ~csagues

Motivation

Index

* Features. FM, H, TT (Fundamental Matriz, Homography and Trifocal Tensor)
* Visual mobile robot control
, FM based
, H based
, TT based
, Long term navigation
\diamond Control of Multi-robot systems
, Data association
> Coordinated motion with epipoles
> Central decision with flying camera on scene - Homography

Features

- Harris corner extractor

- Lines

- SIFT
- SURF

FM: Fundamental Matriz

FM: Matriz Fundamental

- Fundamental Matrix
> Matrix 3×3 satisfying: $\mathbf{x}^{\top \top} F \mathbf{x}=0$
- Independent of scene structure

$$
\mathbf{F}=\left[\begin{array}{lll}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33}
\end{array}\right]
$$

> As a dot product:
$>\left(x^{\prime} \cdot x, x^{\prime} \cdot y, x^{\prime}, y^{\prime} \cdot x, y^{\prime} \cdot y, y^{\prime}, x, y, 1\right) \cdot f=0$
, With 8 points we have: $A \cdot f=0$

- 8 points=> Solution to scale factor
- SVD(A) => Singular vector of smallest singular value

$$
\mathbf{F}=\mathbf{K}_{2}^{-T}\left([\mathbf{t}]_{\times} \mathbf{R}\right) \mathbf{K}_{1}^{-1}
$$

H: Homography

- Projective trasformation between two planes

H: Homography

$$
\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right]=\left(\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right)\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \Leftrightarrow \mathbf{x}^{\prime}=\mathbf{H} \mathbf{x}
$$

$$
\mathbf{H}=\mathbf{K}\left(\mathbf{R}-\mathbf{t} \frac{\mathbf{n}^{T}}{d}\right) \mathbf{K}^{-1}
$$

TT: Trifocal tensor (1D)

TT: Trifocal tensor

$$
\begin{gathered}
\begin{array}{c}
\lambda_{1} \mathbf{r}_{1}=\mathbf{P}_{1} \mathbf{v} \\
\lambda_{2} \mathbf{r}_{2}= \\
\lambda_{3} \mathbf{r}_{3}=\mathbf{P}_{2} \mathbf{v} \\
\mathbf{P}_{3} \mathbf{v}
\end{array} \\
{\left[\begin{array}{cccc}
\mathbf{P}_{1} & \mathbf{r}_{1} & 0 & 0 \\
\mathbf{P}_{2} & 0 & \mathbf{r}_{2} & 0 \\
\mathbf{P}_{3} & 0 & 0 & \mathbf{r}_{3}
\end{array}\right]\left[\mathbf{v},-\lambda_{1},-\lambda_{2},-\lambda_{3}\right]^{T}=0 \quad\left|\begin{array}{cccc}
\mathbf{P}_{1} & \mathbf{r}_{1} & 0 & 0 \\
\mathbf{P}_{2} & 0 & \mathbf{r}_{2} & 0 \\
\mathbf{P}_{3} & 0 & 0 & \mathbf{r}_{3}
\end{array}\right|=0} \\
\sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{k=1}^{2} T_{i j k} \mathbf{r}_{1(i)} \mathbf{r}_{2(j)} \mathbf{r}_{3}(k)=0 \\
T_{111}=t_{z}^{\prime} \sin \theta^{\prime \prime}-t_{z}^{\prime \prime} \sin \theta^{\prime} ; \quad T_{211}=-t_{z}^{\prime} \cos \theta^{\prime \prime}+t_{z}^{\prime \prime} \cos \theta^{\prime} \\
T_{112}=t_{z}^{\prime} \cos \theta^{\prime \prime}+t_{x}^{\prime \prime} \sin \theta^{\prime} ; \\
T_{121}=-t_{x}^{\prime} \sin \theta^{\prime \prime}-t_{z}^{\prime \prime} \cos \theta^{\prime} ; \quad T_{212}=t_{z}^{\prime} \sin \theta^{\prime \prime}-t_{x}^{\prime \prime} \cos \theta^{\prime} \\
T_{122}^{\prime}=-t_{x}^{\prime} \cos \theta^{\prime \prime}+t_{x}^{\prime \prime} \cos \theta^{\prime} ; \quad \\
T_{222}=-t_{x}^{\prime} \sin \theta^{\prime \prime}+t_{z}^{\prime \prime} \sin \theta_{x}^{\prime \prime} \sin \theta^{\prime} . \\
\text { The tensor 1D has } 2 \times 2 \times 2 \text { elements,wl<3w-3+2l-1,5 features needed } \\
\text { The 2D tensor has } 3 \times 3 \times 3 \text { elements }
\end{gathered}
$$

Nonholonomic Epipolar Visual Servoing - FM based

Nonholonomic Epipolar Visual Servoing - FM based

$$
\begin{aligned}
e_{t_{x}} & =\alpha_{x} \frac{x}{z} \\
e_{c_{x}} & =\alpha_{x} \frac{x \cos \theta-z \sin \theta}{z \cos \theta+x \sin \theta}
\end{aligned}
$$

$$
\left.\begin{array}{c}
v \\
\omega
\end{array}\right)=L^{-1}\binom{\nu_{c}}{\nu_{t}} \quad \text { with } \quad L=\left[\begin{array}{cc}
-\frac{\alpha_{x} \cos (\theta+\psi)}{d \sin ^{2}(\theta+\psi)} & -\frac{\alpha_{x}}{\sin ^{2}(\theta+\psi)} \\
-\frac{\alpha_{x} \cos (\theta+\psi)}{d \sin ^{2}(\psi)} & 0
\end{array}\right]
$$

Nonholonomic Epipolar Visual Servoing - FM based

Desired epipole trajectories

Epipoles evolution

Invertible if det\#0

$$
\operatorname{det}(L)=-\alpha^{2}{ }_{x} \cos (\theta+\psi) / d \sin ^{2}(\psi) \sin ^{2}(\theta+\psi)
$$

Singularidad ecx $=0$

$$
(\theta+\psi)=90^{\circ}
$$

Nonholonomic Epipolar Visual Servoing - FM based

Epipoles and epipolar lines

Nonholonomic Epipolar Visual Servoing - FM based

Nonholonomic Epipolar Visual Servoing - FM based

Nonholonomic Epipolar Visual Servoing - FM based

 Sliding mode control to avoid singularity- The control task is carried out in two steps:

Initial configuration

Intermediate configuration

Final configuration

Nonholonomic Epipolar Visual Servoing - FM based

- Control goal of the step - Solve the stabilization problem in the following error system, where $\xi_{23}=e_{23}-e_{23}^{d}(t), \xi_{32}=e_{32}-e_{32}^{d}(t)$.

Desired trajectories
$\left[\begin{array}{l}\dot{\xi}_{23} \\ \dot{\xi}_{32}\end{array}\right]=\left[\begin{array}{cc}-\frac{\alpha_{x} \sin \left(\phi_{2}-\psi_{2}\right)}{d_{23} \cos ^{2}\left(\phi_{2}-\psi_{2}\right)} & \frac{\alpha_{x}}{\cos ^{2}\left(\phi_{2}-\psi_{2}\right)} \\ -\frac{\alpha_{x} \sin \left(\phi_{2}-\psi_{2}\right)}{d_{23} \cos ^{2}\left(\psi_{2}\right)} & 0\end{array}\right]\left[\begin{array}{l}v \\ \omega\end{array}\right]-\left[\begin{array}{l}\dot{e}_{23}^{d} \\ \dot{e}_{32}^{d}\end{array}\right]=L\left(\phi_{2}, \psi_{2}\right) \mathrm{u}-\dot{\mathrm{e}}^{d}$

$$
\begin{aligned}
& e_{23}^{d}(t)=\sigma \frac{e_{23}(0)}{2}\left(1+\cos \left(\frac{\pi}{\tau} t\right)\right) \\
& e_{32}^{d}(t)=\frac{e_{32}(0)}{2}\left(1+\cos \left(\frac{\pi}{\tau} t\right)\right)
\end{aligned}
$$

where $\mathbf{L}(\phi, \psi)$ is the so-called decoupling matrix.

- Sliding mode control with sliding surfaces

$$
\mathbf{s}=\left[\begin{array}{l}
s_{c} \\
s_{t}
\end{array}\right]=\left[\begin{array}{l}
\xi_{23} \\
\xi_{32}
\end{array}\right]=\left[\begin{array}{l}
e_{23}-e_{23}^{d} \\
e_{32}-e_{32}^{d}
\end{array}\right]=\mathbf{0} .
$$

- Decoupling-based controller.
where $u_{c}=\dot{e}_{23}^{d}-\lambda_{c} s_{c}-\kappa_{c} \operatorname{sign}\left(s_{c}\right)$,

$$
u_{t}=\dot{e}_{32}^{d}-\lambda_{t} s_{t}-\kappa_{t} \operatorname{sign}\left(s_{t}\right)
$$

Nonholonomic Epipolar Visual Servoing - FM based

- A singular pose is shown in the figure

$$
\phi-\psi=\arctan \left(e_{23} / \alpha_{x}\right)=0
$$

- Bounded controller. These inputs don't use the decoupling matrix

$$
\mathbf{u}_{b}=\left[\begin{array}{c}
v_{b} \\
\omega_{b}
\end{array}\right]=\left[\begin{array}{c}
k_{v} \operatorname{sign}\left(s_{t} \sin \left(\phi_{2}-\psi_{2}\right)\right) \\
-k_{\omega} \operatorname{sign}\left(s_{c}\right)
\end{array}\right] .
$$

- This is a local control law for the error system.
- By switching between controllers accordingly, robust global stabilization of the error system is achieved.

Robust Control Law

Nonholonomic Epipolar Visual Servoing - FM based

- The epipoles are computed from synthetic images of size 640×480 pixels.
- Target location is (0,0,0 $)^{\circ}$.
- Virtual scene:

Nonholonomic Epipolar Visual Servoing - FM based

Nonholonomic Homography based - H based

- Two images can be geometrically linked by a homography
* The homography is generated by a plane of the scene
- The homography can be computed from point matches

$$
\mathbf{H}=\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right]
$$

- Goal: $\mathrm{H}=\mathrm{I}$

Nonholonomic Homography based - H based

The homography is related to camera motion:

$$
\mathbf{H}=\mathbf{K}\left(\mathbf{R}-\mathbf{t} \frac{\mathbf{n}^{T}}{d}\right) \mathbf{K}^{-1}
$$

Planar motion:

$$
\mathbf{H}=\left[\begin{array}{ccc}
h_{11} & h_{12} & h_{13} \\
0 & 1 & 0 \\
h_{31} & h_{32} & h_{33}
\end{array}\right] \quad \text { with: }\left\{\begin{array}{l}
h_{11}=\cos \phi+(x \cos \phi+z \sin \phi) \frac{n_{x}}{d} \\
h_{12}=\frac{\alpha_{x}}{\alpha_{y}}(x \cos \phi+z \sin \phi) \frac{n_{y}}{d} \\
h_{13}=\alpha_{x}\left(\sin \phi+(x \cos \phi+z \sin \phi) \frac{n_{z}}{d}\right) \\
h_{31}=\frac{1}{\alpha_{x}}\left(-\sin \phi+(-x \sin \phi+z \cos \phi) \frac{n_{x}}{d}\right) \\
h_{32} \frac{1}{\alpha_{y}}(-x \sin \phi+z \cos \phi) \frac{n_{y}}{d} \\
h_{33}=\cos \phi+(-x \sin \phi+z \cos \phi) \frac{n_{z}}{d}
\end{array}\right.
$$

Non-linear relation of H with state system:

$$
(x, z, \phi)^{T} \longleftrightarrow h_{i j}
$$

Nonholonomic Homography based VS

2 dof system \rightarrow Two elements of the homography are enough to define the control

- Derivatives of the output functions:

$$
\left\{\begin{array}{l}
\dot{h}_{13}=\alpha_{x} h_{33} \omega \\
\dot{h}_{33}=\frac{n_{z}}{d} v-\frac{h_{13}}{\alpha_{x}} \omega
\end{array}\right.
$$

- State space form

$$
\left\{\begin{array} { l }
{ \dot { \mathbf { x } } = f (\mathbf { x } , \mathbf { u }) } \\
{ \mathbf { y } = h (\mathbf { x }) }
\end{array} \text { with: } \left\{\begin{array}{ll}
\text { State vector: } & \mathbf{x}=(x, z, \phi)^{T} \\
\text { Input vector: } & \mathbf{u}=(v, \omega)^{T} \\
\text { Output vector: } & \mathbf{y}=\left(h_{13}, h_{33}\right)^{T}
\end{array}\right.\right.
$$

- Linear relation between the input and output

$$
\binom{v}{\omega}=\mathbf{L}^{-1}\binom{\nu_{13}}{\nu_{33}} \quad \text { with: } \quad \mathbf{L}=\left[\begin{array}{cc}
0 & \alpha_{x} h_{33} \\
\frac{n_{z}}{d} & -\frac{h_{13}}{\alpha_{x}}
\end{array}\right]
$$

Nonholonomic Homography based - H based

Tracking of the desired trajectories of the homography elements

- Input of the control:
, Exponentially stable error dynamics

$$
\binom{\nu_{13}}{\nu_{33}}=\binom{\dot{h}_{13}^{d}-k_{13}\left(h_{13}-h_{13}^{d}\right)}{\dot{h}_{33}^{d}-k_{33}\left(h_{33}-h_{33}^{d}\right)}
$$

- Desired trajectories:

$$
\begin{aligned}
& 0 \leq t \leq T_{1}\left\{\begin{array}{l}
h_{13}^{d}(t)=\left(h_{13}(0)-g_{t}\right)\left(\frac{t^{2}}{T_{1}^{2}}-2 \frac{t}{T_{1}}+1\right)+g_{t} \\
h_{33}^{d}(t)=\left(\frac{1-h_{33}(0)}{2}\right)\left(\frac{t^{2}}{T_{1}^{2}}+1\right)+\left(3 h_{33}(0)-1\right) / 2
\end{array}\right. \\
& T_{1}<t \leq T_{2}\left\{\begin{array}{l}
h_{13}^{d}(t)=h_{13}\left(T_{1}\right) \frac{\phi_{t}(t)}{\phi_{t}\left(T_{1}\right)} \\
h_{33}^{d}(t)=\left(\frac{h_{33}(0)-1}{2}\right)\left(\frac{\left(t-T_{1}\right)^{2}}{\left(T_{2}-T_{1}\right)^{2}}-2 \frac{t-T_{1}}{T_{2}-T_{1}}+1\right)+1
\end{array}\right. \\
& t>T_{2}\left\{\begin{array}{l}
h_{13}^{d}(t)=0 \\
h_{33}^{d}(t)=1
\end{array}\right.
\end{aligned}
$$

Nonholonomic Homography based - H based

Combination of Epipoles/Homographies for VS

Epipoles

x Homography

Epipolar-based control: $\binom{v_{F}}{\omega_{F}}=\frac{1}{\alpha_{x}}\left[\begin{array}{cc}0 & -\frac{d \cos ^{2}(\psi)}{\sin (\phi-\psi)} \\ \cos ^{2}(\phi-\psi) & -\cos ^{2}(\psi)\end{array}\right]\binom{\nu_{c}}{\nu_{t}}$

Robotics, Perception and Real Time Group

Combination of Epipoles/Homographies for VS

x Epipoles
\checkmark Homography

Homography-based control: $\quad\binom{v_{H}}{\omega_{H}}=\left[\begin{array}{cc}\frac{h_{13}}{\alpha_{x}^{2} h_{33}} \frac{d_{\pi}}{n_{z}} & \frac{d_{\pi}}{n_{z}} \\ \frac{1}{\alpha_{x} h_{33}} & 0\end{array}\right]\binom{\nu_{13}}{\nu_{33}}$

Combination of Epipoles/Homographies for VS

Combination of Epipoles/Homographies for VS

Visual control - TT based

- The trifocal tensor is the intrinsic geometry between three views.
- It only depends on the camera internal parameters and relative pose.
- The trifocal tensor $\mathrm{T}_{3 \times 3 \times 3}$ encapsulates this intrinsic geometry.

Matrix notation
$\mathrm{T}=\left[\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}\right]$
$\left[\mathrm{x}_{2}\right]_{\times}\left(\sum_{i} \mathrm{x}_{1}^{i} \mathbf{T}_{i}\right)\left[\mathrm{x}_{3}\right]_{\times}=0_{3 \times 3}$

Seven correspondences needed

Visual control - TT based

Visual control - TT based

- Particularly the 1D trifocal tensor allows:
- Exploit the bearing information.
- Reduce the camera calibration parameters required for control (center of projection and vertical alignment).
- The trifocal tensor is a more general geometric constraint than epipolar geometry.
- Epipolar geometry is ill-conditioned with short baseline and with planar scenes.
- Five corresponding points

Visual control - TT based

- Initial location $\mathbf{C}_{1}=\left(x_{1}, y_{1}, \phi_{1}\right)$.
- Target location $\mathbf{C}_{3}=(0,0,0)$.
- Current location (moving camera) $\mathbf{C}_{2}=\left(x_{2}, y_{2}, \phi_{2}\right)$.

8 elements of the tensor:

$$
\mathbf{T}_{i j k}^{m}=\left[\begin{array}{c}
T_{11}^{m} \\
T_{112}^{m} \\
T_{121}^{m} \\
T_{122}^{m} \\
T_{211}^{m} \\
T_{212}^{m} \\
T_{212}^{m} \\
T_{21}^{m} \\
T_{222}^{m}
\end{array}\right]=\left[\begin{array}{c}
t_{y_{1}} \sin \phi_{2}-t_{y_{2}} \sin \phi_{1} \\
-t_{y_{1}} \cos \phi_{2}+t_{y_{2}} \cos \phi_{1} \\
t_{y_{1}} \cos \phi_{2}+t_{x_{2}} \sin \phi_{1} \\
t_{y_{1}} \sin \phi_{2}-t_{x_{2}} \cos \phi_{1} \\
-t_{x_{1}} \sin \phi_{2}-t_{y_{2}} \cos \phi_{1} \\
t_{x_{1}} \cos \phi_{2}-t_{y_{2}} \sin \phi_{1} \\
-t_{x_{1}} \cos \phi_{2}+t_{x_{2}} \cos \phi_{1} \\
-t_{x_{1}} \sin \phi_{2}+t_{x_{2}} \sin \phi_{1}
\end{array}\right]
$$

where the relative locations between cameras are given as

$$
\left[\begin{array}{c}
t_{x_{i}} \\
t_{y_{i}}
\end{array}\right]=-\left[\begin{array}{cc}
\boldsymbol{\operatorname { c o s }} \phi_{i} & \boldsymbol{\operatorname { s i n }} \phi_{i} \\
-\boldsymbol{\operatorname { s i n }} \phi_{i} & \boldsymbol{\operatorname { c o s }} \phi_{i}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{i} \\
y_{i}
\end{array}\right]
$$

$$
\text { for } i=1,2 .
$$

This is an over-constrained measurement

Visual control - TT based

Values of the trifocal tensor in particular locations

- When $\mathbf{C}_{2}=\mathbf{C}_{1}\left(t_{x_{2}}=t_{x_{1}}, t_{y_{2}}=t_{y_{1}}\right)$

$$
\begin{aligned}
& T_{111}=0, T_{112}=0, T_{121}+T_{211}=0, \\
& T_{221}=0, T_{222}=0, T_{122}+T_{212}=0 .
\end{aligned}
$$

- When $\mathbf{C}_{2}=\mathbf{C}_{3}\left(t_{x_{2}}=0, t_{y_{2}}=0\right)$

$$
\begin{aligned}
& T_{111}=0, T_{122}=0, T_{112}+T_{121}=0, \\
& T_{211}=0, T_{222}=0, T_{212}+T_{221}=0 .
\end{aligned}
$$

Time-derivatives of the elements of the tensor

$$
\begin{array}{ll}
\begin{array}{ll}
\dot{T}_{111}=\frac{\sin \phi_{1}}{T_{N}^{m}} v+T_{121} \omega, & \dot{T}_{211}=\frac{\cos \phi_{1}}{T_{N}^{m}} v+T_{221} \omega, \\
\dot{T}_{112}=-\frac{\cos \phi_{1}}{T_{N}^{m}} v+T_{122} \omega, & \dot{T}_{212}=\frac{\sin \phi_{1}}{T_{N}^{m}} v+T_{222} \omega, \\
\hline \dot{T}_{121}=-T_{111} \omega, & \dot{T}_{221}=-T_{211} \omega, \\
\dot{T}_{122}=-T_{112} \omega, & \dot{T}_{222}=-T_{212} \omega .
\end{array},
\end{array}
$$

Visual control - TT based

- Three variables to desired values but we choose to make a Square control system.

- By using two outputs, the tensor provides three possibilities:

First part of the control
Second part

	Correcting	DOF	Drawback
1	Orientation and depth (ϕ, y)	Lateral error (x)	Non-holonomic constraint does not allow to correct the remainder lateral error.
2			
	Orientation and lateral error (ϕ, x)	Depth (y)	Unknown final values of the tensor elements to define the control objective.
3	Lateral error and depth (x, y)	Orientation (ϕ)	Differential-drive allows to correct the remainder orientation error.

Visual control - TT based

Position correction with two selected outputs:

$$
\begin{aligned}
& \xi_{1}=T_{112}+T_{121}, \\
& \xi_{2}=T_{212}+T_{221} .
\end{aligned}
$$

- When $\xi_{1} \equiv 0, \xi_{2} \equiv 0$

$$
\left[\begin{array}{c}
T_{112}+T_{121} \\
T_{212}+T_{221}
\end{array}\right]=\left[\begin{array}{cc}
\boldsymbol{\operatorname { s i n }} \phi_{1} & \boldsymbol{\operatorname { c o s }} \phi_{1} \\
\boldsymbol{\operatorname { c o s }} \phi_{1} & -\boldsymbol{\operatorname { s i n }} \phi_{1}
\end{array}\right]\left[\begin{array}{l}
t_{x_{2}} \\
t_{y_{2}}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

- Zero dynamics:

$$
\begin{aligned}
Z^{*} & =\left\{\left.\left[\begin{array}{lll}
x_{2} & y_{2} & \phi_{2}
\end{array}\right]^{T} \right\rvert\, \xi_{1} \equiv 0, \xi_{2} \equiv 0\right\} \\
& =\left\{\left[\begin{array}{lll}
0 & 0 & \phi_{2}
\end{array}\right]^{T}, \phi_{2} \in R\right\} .
\end{aligned}
$$

- Control goal of the step - Stabilize the following error system, where $e_{1}=\xi_{1}-\xi_{1}^{d}$ and $e_{2}=\xi_{2}-\xi_{2}^{d}$

$$
\left[\begin{array}{c}
\dot{e}_{1} \\
\dot{e}_{2}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{\cos \phi_{1}}{T_{N}^{m}} & T_{122}-T_{111} \\
-\frac{\sin \phi_{1}}{T_{N}^{m}} & T_{222}-T_{211}
\end{array}\right]\left[\begin{array}{c}
v \\
\omega
\end{array}\right]-\left[\begin{array}{c}
\dot{\xi}_{1}^{d} \\
\dot{\xi}_{2}^{d}
\end{array}\right]=\mathbf{M}\left(\mathbf{T}, \phi_{1}\right) \mathbf{u}-\dot{\xi}^{d} .
$$

Desired trajectories

$$
\begin{aligned}
& \xi_{1}^{d}=\frac{T_{112}^{\text {ini }}+T_{121}^{i n i}}{2}\left(1+\cos \left(\frac{\pi}{\tau} t\right)\right) \\
& \xi_{2}^{d}=\frac{T_{212}^{i n i}+T_{221}^{i n i}}{2}\left(1+\cos \left(\frac{\pi}{\tau} t\right)\right) .
\end{aligned}
$$

- The initial orientation ϕ_{1} introduces uncertainty in this system and a robust control law is required.

Visual control - TT based

Position correction: It is carried out by two controllers, because the first one has a singularity problem when the robot is reaching the target location.

- Sliding mode control with sliding surfaces:

$$
\mathbf{s}=\left[\begin{array}{l}
s_{1} \\
s_{2}
\end{array}\right]=\left[\begin{array}{l}
e_{1} \\
e_{2}
\end{array}\right]=\left[\begin{array}{l}
\xi_{1}-\xi_{1}^{d} \\
\xi_{1}-\xi_{2}^{d}
\end{array}\right]=\mathbf{0} .
$$

- Decoupling-based controller

$$
\mathbf{u}_{d b}=\left[\begin{array}{c}
v_{d b} \\
\omega_{d b}
\end{array}\right] \stackrel{1}{\operatorname{det}(\mathbf{M})}\left[\begin{array}{cc}
T_{222}-T_{211} & T_{111}-T_{122} \\
\frac{\sin \phi_{1}}{T_{N}^{m}} & -\frac{\cos \phi_{1}}{T_{N}^{m}}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \quad \begin{gathered}
\text { Singularity if } \\
|\operatorname{det}(\mathrm{M})|=0 .
\end{gathered}
$$

where $\operatorname{det}(\mathbf{M})=\frac{1}{T_{N}^{m}}\left[\left(T_{122}-T_{111}\right) \sin \phi_{1}+\left(T_{211}-T_{222}\right) \cos \phi_{1}\right], T_{N}^{m}=T_{121}^{m}$

$$
u_{1}=\dot{\xi}_{1}^{d}-\lambda_{1} s_{1}-\kappa_{1} \operatorname{sign}\left(s_{1}\right), \quad u_{2}=\dot{\xi}_{2}^{d}-\lambda_{2} s_{2}-\kappa_{2} \operatorname{sign}\left(s_{2}\right) .
$$

- Bounded controller

$$
\mathbf{u}_{b}=\left[\begin{array}{c}
v_{b} \\
\omega_{b}
\end{array}\right]=\left[\begin{array}{c}
k_{\nu} \operatorname{sign}\left(s_{1}\right) \\
-k_{\omega} \operatorname{sign}\left(s_{2}\left(T_{222}-T_{211}\right)\right)
\end{array}\right] .
$$

- Robust global stabilization of the error system is achieved by commuting from the decoupling controller to the bounded one if $|\operatorname{det}(\mathbf{M})|<T_{h}$.

Visual control - TT based

- Correction orientation: We can use any single tensor element whose dynamics depends on ω and its final value being zero.
- Control goal of the step - Stabilization of the following dynamics

$$
\dot{T}_{122}=-T_{112} \omega .
$$

- A suitable input ω that yields T_{122} exponentially stable is

$$
\omega=k_{\omega} \frac{T_{122}}{T_{112}}, \quad t>\tau
$$

- When position correction has been reached $T_{122}=t_{y_{1}} \cos \phi_{2}$, and consequently, if $T_{122}=0$ then $\phi_{2}=n \pi$ with $n \in \mathbf{Z}$, and the orientation is corrected.
- Although only a rotation is needed, the same bounded translational velocity is used to maintain the longitudinal position under closed loop control.

$$
v=k_{v} \operatorname{sign}\left(s_{1}\right) .
$$

Visual control - TT based

The 1D-TT is computed from synthetic images of size 1024×768 pixels.
The desired pose is $(0,0,0$) .
Virtual scene:

Visual control with FoV constraints

Visual control with FoV constraints

- Observed target \square Initial positions \triangle Goal

Visual control with FoV constraints

- The homography between two views is related to camera motion:

$$
\mathbf{H}=\mathbf{K}\left(\mathbf{R}-\mathbf{t} \frac{\mathbf{n}^{T}}{d}\right) \mathbf{K}^{-1}
$$

Planar motion:
$\mathbf{H}=\left[\begin{array}{ccc}h_{11} & h_{12} & h_{13} \\ 0 & 1 & 0 \\ h_{31} & h_{32} & h_{33}\end{array}\right]$

$$
\text { With: }\left\{\begin{array}{l}
h_{11}=\cos \phi+(x \cos \phi+z \sin \phi) \frac{n_{x}}{d} \\
h_{12}=\frac{\alpha_{x}}{\alpha_{y}}(x \cos \phi+z \sin \phi) \frac{n_{y}}{d} \\
h_{13}=\alpha_{x}\left(\sin \phi+(x \cos \phi+z \sin \phi) \frac{n_{z}}{d}\right) \\
h_{31}=\frac{1}{\alpha_{x}}\left(-\sin \phi+(-x \sin \phi+z \cos \phi) \frac{n_{x}}{d}\right) \\
h_{32}=\frac{1}{\alpha_{y}}(-x \sin \phi+z \cos \phi) \frac{n_{y}}{d} \\
h_{33}=\cos \phi+(-x \sin \phi+z \cos \phi) \frac{n_{z}}{d}
\end{array}\right.
$$

Target: Plane of the scene

- Goal: H = I
- Subgoals: H=...

Visual control with FoV constraints

Particular homographies in particular positions
$\mathbf{H}_{(x, z, \phi)}=\left[\begin{array}{ccc}h_{11} & h_{12} & h_{13} \\ 0 & 1 & 0 \\ h_{31} & h_{32} & h_{33}\end{array}\right]$

$\mathbf{H}_{\left(x, z, \phi_{t}\right)}=\left[\begin{array}{ccc}\cos \phi_{t} & 0 & \alpha_{x} \sin \phi_{t} \\ 0 & 1 & 0 \\ \frac{-\sin \phi_{t}}{\alpha_{x}}+\frac{z n_{x} / d}{\alpha_{x} \cos \phi_{t}} & \frac{z n_{y} / d}{\alpha_{y} \cos \phi_{t}} & \frac{\cos ^{2} \phi_{t}+z n_{z} / d}{\cos \phi_{t}}\end{array}\right]$
$\mathbf{H}_{\left(0,0, \phi_{t}\right)}=\left[\begin{array}{ccc}\cos \phi_{t} & 0 & \alpha_{x} \sin \phi_{t} \\ 0 & 1 & 0 \\ \frac{-\sin \phi_{t}}{\alpha_{x}} & 0 & \cos \phi_{t}\end{array}\right]$

$$
\mathbf{H}_{(0,0,0)}=\mathbf{I}
$$

Visual control with FoV constraints

- Switched control: Three sequential steps

Step 1:

$\binom{v_{1}}{\omega_{1}}=\binom{0}{-k_{\omega}\left(h_{11}^{2}+h_{13}^{2} / \alpha_{x}^{2}-1\right)}$
Step 2:
$\binom{v_{2}}{\omega_{2}}=\binom{-k_{v}\left(h_{11}-h_{33}\right)}{-k_{\omega}\left(h_{11}^{2}+h_{13}^{2} / \alpha_{x}^{2}-1\right)}$
Step 3:
$\binom{v_{3}}{\omega_{3}}=\binom{0}{-k_{\omega} h_{13}}$

Visual control with FoV constraints

- Switched control: Five sequential steps

-Subgoals $\left\{\begin{array}{l}>\mathbf{G}_{1}: \text { Pure rotation until reaching the first T-curve } \\ >\mathbf{G}_{2}: \text { Follow the first T-curve forward } \\ >\mathbf{G}_{3}: \text { Pure rotation until reaching the second T-curve } \\ >\mathbf{G}_{4}: \text { Follow the second T-curve backward } \\ >\mathbf{G}_{5}: \text { Pure rotation until reaching desired Goal }\end{array}\right.$

Visual control with FoV constraints

* Switched control: Five sequential steps

Step 1: $\binom{v_{1}}{\omega_{1}}=\binom{0}{-k_{\omega}\left(h_{13}-h_{13}^{G_{1}}\right)} \quad$ Step 4: $\binom{v_{4}}{\omega_{4}}=\binom{-k_{v}\left(h_{33}-h_{11}\right)}{-k_{\omega}\left(h_{13}-h_{13}^{G_{4}}\right)}$
Step 2: $\binom{v_{2}}{\omega_{2}}=\binom{-k_{v}\left(h_{33}-h_{33}^{G 2}\right)}{-k_{\omega}\left(h_{13}-h_{13}^{G 2}\right)} \quad$ Step 5: $\binom{v_{5}}{\omega_{5}}=\binom{0}{-k_{\omega} h_{13}}$
Step 3: $\binom{v_{3}}{\omega_{3}}=\binom{0}{-k_{\omega}\left(h_{13}-h_{13}^{G_{3}}\right)}$

- Subgoals:
> Defined in terms of homography parameters
> Decomposition of the homography

$$
G_{i} \quad(i=1 . .5)\left\{\begin{array}{l}
h_{13}^{G_{i}}=\frac{\left(\frac{h_{13}}{\alpha x}-\sin \phi\right)\left(\rho^{G_{i}} \cos \phi^{G_{i}}+\sin \phi^{G_{i}}\right)}{(\rho \cos \phi+\sin \phi) \rho_{z} / \alpha_{x}}+\alpha_{x} \sin \phi^{G_{i}} \\
h_{33}^{G_{i}}=\frac{\left(h_{33}-\cos \phi\right)\left(-\rho^{\left.G_{i} \sin \phi^{G_{i}}+\cos \phi^{G_{i}}\right)}\right.}{(-\rho \sin \phi+\cos \phi) \rho_{z}}+\cos \phi^{G_{i}}
\end{array}\right.
$$

Visual control with FoV constraints

Visual control with FoV constraints

An Optimal Homography-Based Control Scheme for Mobile Robots with Nonholonomic and Field-of-View Constraints
G. López-Nicolás, N. Gans, S. Bhattacharya,
C. Sagüés, J.J. Guerrero and S. Hutchinson

Long term navigation

- Task: reach a desired position associated with a target image, which belongs to a visual memory acquired in a teaching phase.
- A visual path of n key images is extracted from the visual memory, which must be followed autonomously in order to reach the target.

Issues in previous work in the literature:

1) Constrained field of view of conventional cameras.
2) Change of velocities when change of image.
3) Information about velocity in the visual path.

Long term navigation

- The omnidirectional cameras can be virtually represented as conventional cameras when working with points on the sphere.
- Each one of the key images is used as target image accordingly.

Target location
Current location

$\mathbf{C}_{c}=(x, y, \phi)$

Epipoles

$$
\begin{aligned}
& e_{c}=\alpha_{x} \frac{x \cos \phi+y \sin \phi}{y \cos \phi-x \sin \phi}, \\
& e_{t}=\alpha_{x} \frac{x}{y} .
\end{aligned}
$$

- Interaction with the robot velocities:

$$
\begin{aligned}
\dot{e}_{c} & =-\frac{\alpha_{x} \sin (\phi-\psi)}{d \cos ^{2}(\phi-\psi)} v+\frac{\alpha_{x}}{\cos ^{2}(\phi-\psi)} \omega \\
\dot{e}_{t} & =-\frac{\alpha_{x} \sin (\phi-\psi)}{d \cos ^{2}(\psi)} v
\end{aligned}
$$

Long term navigation

- The current epipole gives information of the translation direction and it is directly related to the required robot rotation to be aligned with the target.
- Use of the x-coordinate of the current epipole as feedback information to control the robot heading and so, to correct the lateral deviation.

$$
\text { Non-null translational velocity } \quad v \neq 0 \quad \omega^{c e}=k_{t} \omega_{r t}^{c e}+\bar{\omega}^{c e} .
$$

First component of the rotational velocity

$\omega \square f\left(e_{c}\right)$

Second component of the rotational velocity

$\omega \longmapsto f\left(e_{c}^{k i}\right)$

Long term navigation

- Let us define a tracking error to drive the epipole smoothly to zero for every segment between key images

$$
\zeta_{c e}=e_{c}-e_{c}^{d}(t)=0 .
$$

where $e_{c}^{d}(t)=\frac{e_{c}(0)}{2}\left(1+\cos \left(\frac{\pi}{\tau} t\right)\right), 0 \leq t \leq \tau \quad$ with $\tau=\frac{d_{\text {min }}}{v}$.

$$
e_{c}^{d}(t)=0, \quad t>\tau
$$

- Control goal - Stabilization of the error system:

$$
\dot{\zeta}_{c e}=-\frac{\alpha_{x} \sin (\phi-\psi)}{d \cos ^{2}(\phi-\psi)} v+\frac{\alpha_{x}}{\cos ^{2}(\phi-\psi)} \omega_{r t}^{c e}-\dot{e}_{c}^{d} .
$$

- Considering that the translational velocity is known, the following rotational velocity, referred as reference tracking (RT) control, stabilizes the error system

$$
\omega_{r t}^{c e}=\frac{\sin (\phi-\psi)}{d} v+\frac{\cos ^{2}(\phi-\psi)}{\alpha_{x}}\left(\dot{e}_{c}^{d}-k_{c} \zeta_{c e}\right) .
$$

with $k_{c}>0$.

Long term navigation

- A varying translational velocity according to the shape of the path can be computed depending on the epipoles between key images.

$$
v^{c e}=v_{\text {max }}+v_{\text {min }}+\frac{v_{\text {max }}-v_{\text {min }}}{2} \tanh \left(1-\frac{\mid e_{c}^{k_{i j}} / d_{\text {min }}}{\sigma}\right) .
$$

- We propose the following nominal rotational velocity, which is computed from the epipoles between key images:

$$
\bar{\omega}^{c e}=\frac{k_{m}}{d_{\text {min }}^{c e}} e_{c}^{k i} .
$$

- So that, the complete rotational velocity (RT+ control) is given as:

$$
\omega^{c e}=k_{t} \omega_{r t}^{c e}+\bar{\omega}^{c e} .
$$

Switching and stop condition

- The switching condition to the next key image or to stop the task is given when the image error starts to increase, which is defined as follows:

$$
\varepsilon=\frac{1}{r} \sum_{j=1}^{r}\left\|\mathbf{p}_{j}-\mathbf{p}_{i, j}\right\| .
$$

Long term navigation

Index

* Features. FM, H, TT (Fundamental Matriz, Homography and Trifocal Tensor)
* Visual mobile robot control
, FM based
, H based
> TT based
> Long term navigation
\diamond Control of Multi-robot systems
, Data association
> Coordinated motion with epipoles
> Central decision with flying camera on scene - Homography

Multi-Robot Systems

\square Robots communication is limited
$>$ Wireless network.
$>$ Range-limited.
$>$ Visibility (Comm.)
\square Communication graphs
> Nodes: the robots
> Edges: link between robots that can exchange data

\square Each robot exchange data with its one-hop neighbors
\square Robots are moving: new edges may appear / previous links disappear
> Communication graphs with switching topology

Distributed Data Association

- Limited communication: Locally associate features with neighbors
- Propagate local associations through the network
- Inconsistent global associations
\square Distributed algorithms:
> propagate local associations
> detect inconsistencies
> resolve them
\square Additionally, establish global labels for the features

Distributed Data Association

Each robot $i \in\{1, \ldots, n\}$ in the team has a set $\mathcal{S}_{i}=\left\{f_{1}^{i}, \ldots, f_{m_{i}}^{i}\right\}$ of m_{i} features.

- It has executed a local association method F to match its features \mathcal{S}_{i} and its neighbors' ones \mathcal{S}_{j}, for $j \in \mathcal{N}_{i}$

$$
\begin{aligned}
& F\left(\mathcal{S}_{i}, \mathcal{S}_{j}\right)=\boldsymbol{A}_{i j}=\boldsymbol{A}_{j i}^{T}=\left(F\left(\mathcal{S}_{j}, \mathcal{S}_{i}\right)\right)^{T} \quad F\left(\mathcal{S}_{i}, \mathcal{S}_{i}\right)=\boldsymbol{A}_{i i}=\mathbf{I} \\
& {\left[\mathbf{A}_{i j}\right]_{r, s}= \begin{cases}1 & \text { if } f_{h}^{i} \text { and } f_{s}^{j} \text { are associated, } \\
0 & \text { otherwise },\end{cases} } \\
& \quad r=1, \ldots, m_{i} \text { and } s=1, \ldots, m_{j} .
\end{aligned}
$$

- This information can be represented with graph, where the nodes are the features of all the robots, and there is a link between two features if they have been locally matched by F.
- The adjacency matrix of this graph is with

$$
\mathbf{A}_{i j}= \begin{cases}F\left(\mathcal{S}_{i}, \mathcal{S}_{j}\right) & \text { if } j \in\left\{\mathcal{N}_{i} \cup i\right\}, \quad \mathbf{A}=\left[\begin{array}{lll}
\vdots & \ddots & \vdots \\
\mathbf{A}_{n 1} & \cdots & \mathbf{A}_{n n}
\end{array}\right], \text { otherwise. }\end{cases}
$$

Distributed Data Association

- Goal (robot i). Discover for each the features f_{r}^{i}, all the other features which are connected to f_{r}^{i} through a path.
- Id dea. If there is a link between features f_{r}^{i} and f_{s}^{j}, then the features connected to f_{r}^{i} and to f_{s}^{j} through a path are the same.
- Formal. Distributed computation of the powers of the adjacency matrix,
, Each robot maintain $\mathbf{A}^{t_{1 e}}$ rows of the adjacency matrix power associated to its own features, and updates them using data from its neighbors
> For each of this features f_{r}^{i}, each robot \mathbf{i} obtains all f_{s}^{j} connected to f_{r}^{i} through a path, and detects the inconsistent ones.

Distributed Data Association

- I dea: break local associations so that there are no two features from the same robot related by a path.
. Note that each inconsistency is motivated by, at least, one spurious local link (false positives).
- All local links are equal \Longleftrightarrow Resol. algorithm based on Trees
- For each conflictive feature belonging to the same robot, use it as root of its tree and incrementally add features linked to it.
, If a feature already belongs to a tree, or receives requests from more than a tree, it selects one of the trees and erases links to the others.
- Links with quality information \Longrightarrow Maximum Error Cut
- For each pair of inconsistent features belonging to same robot, select and erase the link with the largest error that breaks the inconsistency.

Distributed Data Association

Compute the robot positions in a common reference frame

- Each robot measures the relative position of its neighbors
- Distributed map merging scenario
> Local maps aligned before merging
, It only needs to be computed once

Distributed Data Association

Multi robot control based on epipoles

- Coordinated control for attitude sincronization

Modeled with an undirected graph

$$
\begin{gathered}
\mathcal{G}=(\mathcal{V}, \mathcal{E}) \\
\mathcal{N}_{i}=\{j \in \mathcal{V} \mid(i, j) \in \mathcal{E}\}
\end{gathered}
$$

Non holonomic motion on the plane

$$
\begin{aligned}
& {\left[\begin{array}{c}
\dot{x}_{i} \\
\dot{z}_{i} \\
\dot{\theta}_{i}
\end{array}\right]=\left[\begin{array}{cc}
\sin \left(\theta_{i}\right) & 0 \\
\cos \left(\theta_{i}\right) & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
v_{i} \\
w_{i}
\end{array}\right]} \\
& \text { Polar coordinates } \\
& r_{i j}=\sqrt{x_{i j}^{2}+z_{i j}^{2}} \in \mathrm{R}_{\geq 0}, \\
& \psi_{i j}=\arctan \left(x_{i j} / z_{i j}\right) \in(-\pi / 2, \pi / 2], \\
& \theta_{i j}=\theta_{j}-\theta_{i} \in(-\pi, \pi],
\end{aligned}
$$

Multi robot control based on epipoles

The robots exchange the visual features
Correspondences satisfy the epipolar constraint

$$
\mathbf{p}_{i}^{T} \mathbf{F}_{i j} \mathbf{p}_{j}=0
$$

The epipoles are the null space of $\boldsymbol{F}_{i j}$ and $\boldsymbol{F}_{i j}^{T}$

$$
\begin{aligned}
& e_{i j}=\alpha \tan \left(\psi_{i j}\right) \\
& e_{j i}=\alpha \tan \left(\psi_{i j}-\theta_{i j}\right)
\end{aligned}
$$

The attitude consensus implies the epipoles to be equal

$$
\theta_{i j}=0 \Rightarrow e_{i j}=e_{j i}
$$

Note that the opposite is not necessarily true

$$
\theta_{i j}=\pi \Rightarrow e_{i j}=e_{j i}
$$

Multi robot control based on epipoles

Define

$$
d_{i j}=\arctan \left(\frac{e_{i j}}{\beta}\right)-\arctan \left(\frac{e_{j i}}{\beta}\right) \in(-\pi, \pi], \beta>0
$$

The "geodesic" in the epipole domain

$$
w_{i j}= \begin{cases}d_{i j} & \text { if }\left|d_{i j}\right| \leq \frac{\pi}{2} \\ -\operatorname{sign}\left(d_{i j}\right)\left(\pi-\left|d_{i j}\right|\right) & \text { otherwise }\end{cases}
$$

If the calibration is known, then choosing $\beta=\alpha$ the exact relative orientation can be computed and we have a standard consensus problem

Multi robot control based on epipoles

The distributed controller used by the robots is

$$
w_{i}=K \sum_{j \in \mathcal{N}_{i}} w_{i j}, K>0
$$

Properties of the controller

$$
\begin{aligned}
& w_{i j}=-w_{j i} \\
& \sum_{i \in \mathcal{V}} w_{i}=0 \\
& \operatorname{sign}\left(e_{i j}\right)=\operatorname{sign}\left(e_{j i}\right) \Rightarrow\left|d_{i j}\right|<\pi / 2
\end{aligned}
$$

Multi robot control based on epipoles

Multi-Robot Distributed Visual Coordination using Epipoles

Eduardo Montijano, Johan Thunberg, Xiaoming Hu and Carlos Sagues

Multi-Robot Distributed Visual Coordination using Epipoles

Eduardo Montijano, Johan Thunberg,
Xiaoming Hu and Carlos Sagues

Multi robot control with flying camera (H)

- What? Visual control of mobile robots
> Desired configuration defined by an image
> Task: Navigate to the desired configuration

Initial configuration

Desired configuration

Multi robot control with flying camera (H)

- What? Visual control of mobile robots

Who? Set of nonholonomic vehicles
, Nonholonomic kinematics

- Cartesian coordinates

$$
\begin{aligned}
& \dot{x}=-v \sin \phi \\
& \dot{y}=v \cos \phi \\
& \dot{\phi}=\omega
\end{aligned}
$$

- Polar coordinates

$$
\begin{aligned}
& \dot{\rho}=v \cos \alpha \\
& \dot{\alpha}=\omega-\frac{v}{\rho} \sin \alpha \\
& \dot{\phi}=\omega
\end{aligned}
$$

Multi robot control with flying camera (H)

- What? Visual control of mobile robots

Who? Set of nonholonomic vehicles

- How? Flying camera
- Flying camera looking downward
- Camera motion unknown
- Intrinsic camera parameters known
- Homography: Only visual information

Multi robot control with flying camera (H)

- What? Visual control of mobile robots

Who? Set of nonholonomic vehicles

- How? Flying camera

Where? Motion occurs in a planar floor

- This gives additional constraints on the homography
- Only the set of robots may remain common in the scene

Image of desired configuration:

Actual configuration

Multi robot control with flying camera (H)

- The homography in our framework:
, Multi-robot motion in a planar floor
> Points = Robots => Homography
, Camera flies parallel to the floor
- Then, the homography is constrained:

$$
\begin{aligned}
\mathbf{H} & =\left[\begin{array}{ccc}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
0 & 0 & 1
\end{array}\right] \\
\mathbf{H} & =\left[\begin{array}{ccc}
\cos \phi & \sin \phi & -t_{x} / d \\
-\sin \phi & \cos \phi & -t_{y} / d \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

- This homography can be computed from a minimal set of two points/robots

Multi robot control with flying camera (H)

$\mathbf{H}_{\text {rigid }}$

- If the robots are in the desired configuration:
> The homography is conjugate to a planar Euclidean transformation
, The homography is not the identity matrix

$$
\begin{aligned}
& \mathbf{n}=(0,0,-1)^{T} \\
& \mathbf{x}=(x, y, 0)^{T}
\end{aligned}
$$

Which is coherent with a rigid motion. So, the robots are in the desired formation

Desired configuration

Multi robot control with flying camera (H)

$\mathbf{H}_{\text {nonrigid }}$

- If the robots are NOT in the desired configuration:
- The homography is a similarity transformation with isotropic scaling s
, The H computation with the 2-point method

$$
\begin{aligned}
& \quad \mathbf{n}=(0,0,-1)^{T} \\
& \quad \mathbf{x}=\left(x, y,(s-1) d^{2}\right)^{T} \\
& \text { Which is NOT coherent } \\
& \text { with a rigid motion. So, the } \\
& \text { robots are not in formation }
\end{aligned}
$$

Desired configuration
Current configuration

Multi robot control with flying camera (H)

$\mathbf{H}_{\text {nonrigid }}$

$\mathbf{H}_{\text {rigid }}$

- We have
> Robots not in formation
> Nonrigid homography
> Each pair of robots induces a different Homography, valid but not coherent

$$
\begin{aligned}
\mathbf{H}_{\text {nonrigid }} & =\left[\begin{array}{ccc}
s \cos \phi & s \sin \phi & h_{13} \\
-s \sin \phi & s \cos \phi & h_{23} \\
0 & 0 & 1
\end{array}\right] \\
\mathbf{p}^{\prime} & =\mathbf{H}_{\text {nonrigid }} \mathbf{p}
\end{aligned}
$$

- We want
, Robots in formation
, Rigid homography
> Every pair of robots induce the same Homography
* We define a desired homography
> Like the nonrigid homography but being induced by keeping the motion constraints
- The task is to drive the robots to the desired homography

$$
\mathbf{H}_{\text {rigid }}=\left[\begin{array}{ccc}
\cos \phi & \sin \phi & h_{13} \\
-\sin \phi & \cos \phi & h_{23} \\
0 & 0 & 1
\end{array}\right]
$$

> The desired homography is not constant and depends on the robots and camera motion

$$
\begin{aligned}
\mathbf{H}^{d} & =\mathbf{H}_{\text {nonrigid }}\left[\begin{array}{ccc}
1 / s & 0 & 0 \\
0 & 1 / s & 0 \\
0 & 0 & 1
\end{array}\right] \\
\mathbf{p}^{d} & =\left(\mathbf{H}^{d}\right)^{-1} \mathbf{p}^{\prime}
\end{aligned}
$$

Multi robot control with flying camera (H)

Image of desired configuration

Current image

Multi robot control with flying camera (H)

- Image-based control law
- Control error:
> Current state of the robots on the image vs desired states given by the desired homography
- Switched control consisting of three sequential steps:

Step $1\left\{\begin{array}{l}v=0 \\ \omega=\dot{\psi}_{c}-k_{\omega}\left(\alpha_{m}-\pi\right)\end{array}\right.$

Step $2\left\{\begin{array}{l}v=\dot{\rho}_{d}-k_{v} \rho_{m} \\ \omega=\dot{\psi}_{c}-k_{\omega}\left(\alpha_{m}-\pi\right)\end{array}\right.$
Step $3\left\{\begin{array}{l}v=0 \\ \omega=-k_{\omega}\left(\left(\phi_{m}-\psi_{F m}\right)-\left(\phi_{m}^{0}-\psi_{F m}^{0}\right)\right)\end{array}\right.$

$$
\begin{array}{r}
\rho_{m}=\sqrt{\left(p_{x}-p_{x}^{d}\right)^{2}+\left(p_{y}-p_{y}^{d}\right)^{2}} \\
\psi_{m}=\operatorname{atan2}\left(-\left(p_{x}-p_{x}^{d}\right),\left(p_{y}-p_{y}^{d}\right)\right) \\
\psi_{F m}=\operatorname{atan2}\left(-\left(p_{x}^{i}-p_{x}^{j}\right),\left(p_{y}^{i}-p_{y}^{j}\right)\right) \\
\mathbf{x}^{d}(t)=\left(x^{d}, y^{d}, \phi^{d}\right)^{T} \\
\dot{\rho}_{d}=\partial \rho_{c} / \partial \mathbf{x}^{d}
\end{array}
$$

Multi robot control with flying camera (H)

- Steps 1-2 orientate and drive the robots toward their target locations. In practice, they are carried out simultaneously:

$$
\text { Step } 1 \text { and } 2\left\{\begin{array}{l}
v=\dot{\rho}_{d}-k_{v} \rho_{m} \\
\omega=\dot{\psi}_{c}-k_{\omega}\left(\alpha_{m}-\pi\right)
\end{array}\right.
$$

- Step 3 rotates the robots until they are in the required relative orientation within the formation

$$
\text { Step 3 }\left\{\begin{array}{l}
v=0 \\
\omega=-k_{\omega}\left(\left(\phi_{m}-\psi_{F m}\right)-\left(\phi_{m}^{0}-\psi_{F m}^{0}\right)\right)
\end{array}\right.
$$

Multi robot control with flying camera (H)

Top view

Linear velocity: v
 Homography entries

Angular velocity: ω

Desired configuration:

Desired configuration:

Control de robots y sistemas multi-robot basado en visión

Ciclo de conferencias
Master y Programa de Doctorado en "I ngeniería de Sistemas y de Control"

UNED - ETS I ngeniería I nformática
April -2014

Colaboradores:
Gonzalo López Nicolás
Héctor Manuel Becerra
Rosario Aragüés
Eduardo Montijano
Miguel Aranda

Carlos Sagues
Universidad de Zaragoza
http:/ / www.unizar.es/ ~csagues

