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® What is system identification?

® Basic problems in closed-loop system identification.

¢ Understanding bias and variance in closed-loop system
identification using prediction error methods.

e Some example problems; Interactive Tool for Closed-Loop
Identification (ITCLI) illustration.

® Summary and conclusions.
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® “ldentification is the determination of on the basis of input and
output, of a system within a specified class of systems to which
the system under test is equivalent.” - Lofti Zadeh, 1962.

e System identification focuses on the modeling of dynamical
systems from experimental data.
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e System identification is an inherently iterative procedure; however,
some iterations are more expensive (and demanding) than others.
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ident Graphical User Interface shown; command-line functionality also available.
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Written using Sysquake (www.calerga.com) in collaboration with Professors Jose Luis Guzman and
Manuel Berenguel Soria (Univ. of Almeria, Spain) and Sebastian Dormido Bencomo (UNED, Spanish
National Distance Learning University, Madrid). Paper in Advances in Engineering Software.
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Interactive Tool for Control-Relevant Identification (ITCRI), developed by

Alvarez, Guzman, Rivera, Dormido, and Berenguel. Paper published in
Control Engineering Practice.
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ITCLI: An Interactive Tool for Closed-Loop Identification
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Understanding System Identification

An Interactive, Control-Relevant Exploration

Daniel E. Rivera

José Luis Guzman
Manuel Berenguel
Sebastian Dormido
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® Eliminates the need to put the control loop on “manual” during
identification testing.

® Makes it possible to perform identification while keeping the
plant within operating limits.

® Enables “plant-friendly” identification of open-loop unstable
systems.

Closed-loop identification does not necessarily imply
“something for nothing”
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Problems in Closed-Loop Identification

r +Q_ C yu, | P JéJCgL

- crosscorrelation will exist between disturbance (d)
and input (u) as a result of the control

- control action will introduce additional bias by "eating
away" at excitation

|2
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Debutanizer Closed-Loop Testing
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Closed-loop data set generated by signal injection at the Fuel Gas Flowrate
Setpoint; dashed line shows external signal (ud); solid lines show u and v,

respectively
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Ljung's Thoughts:
From "ldentification in Closed Loop: Some Aspects on Direct

and Indirect Approaches," invited paper for SYSID '97,
Fukuoka, Japan.

- ... the basic problem in closed-loop identification (is this): the
purpose of feedback is to make the sensitivity function small,
especially at frequencies with disturbances and poor system
knowledge. Feedback will thus worsen the measured data's
information about the system at these frequencies."

- There are no difficulties, per se, with closed-loop data; simply
that in practical use, the information content is less

- One could make closed-loop experiments with good
information contents (but poor control performance)

S
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Why closed-loop data can be bad for
system identification

o p(s) = -
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- Consider a first-order system controlled by a discrete-time
Pl controller subject to nonstationary random disturbance.

- Input/output data (y,u) from this control system is used to fit

a Finite Impulse Response model (order 50). %

|6
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Closed-loop identification data
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>>th = arx([y ul,[0 50 1));

A
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y(t) = B(q)u(t — nk) + e(t)
B(q) = by +bog ™t + -+ by, g™

® Model representation similar to correlation analysis (CRA).
e Estimation is a linear regression problem.

® Because of fast sampling, nb is usually of high order
(20 coefficients or more)

® Noise model is unity (i.e., no autocorrelated noise model is
supported in FIR estimation)

|18
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Model Simulation - Closed-loop Data
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>> ysim = idsim(u,th)
>>plot([y ysim])
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Model Step Response

Solid: True Plant Step Response, Dashed: Model Step Response

1 ————
_ Solid: True Step Response
0.5 Dashed: Model Step Response-
0 B B A ENEN o
N\ - Y g
| L v
| /N s g
05 7 |
\ ;- -
e
-1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 5 10 15 20 25 30 35 40 45 50

Sample Time (min)

Conclusion: the closed-loop data set (as presented) is not
informative for system identification.

S
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Practical Considerations in Closed-Loop Identification

1. How does one generate an informative data set for
identification when the plant is in the closed-loop?

2. What is the most appropriate signal injection point?

3. How should the controller be tuned for c-I
iIdentification ?

4. What are the best model structures/parametrizations
for c-1 identification?

5. How can design variables (i.e., prefiltering) improve the
results of c-|l identification?

I 151 |

21



® lra A.
@ ( :L ;E L RSIETON
school of engineering
ARIZONA STATE UNIVERSITY

Control Systems Engineering Laboratory

Closed-Loop Identification Schemes

* Direct Approach: Apply prediction-error methods to (y,u)
the same way as in open-loop operation ignoring
possible feedback and not using the external signals (r

or ud)

 Indirect Approach: |dentify the closed-loop system
between the external signal and the output (which is in
effect an open-loop system); retrive the plant from this
estimate, making use of the known controller transfer

function.

I— 15 |
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Basic Issues in Closed-Loop System Identification

"Identifiability" (Soderstrom et al, 1976, Gustavsson et al.,
1977) Two types of identifiability conditions exist:

e System Identifiable (SI). Data i1s informative for certain model
structures if an external input 1s not entered into the loop.

e Strong System Identifiable (SSI). Needs an external signal or
changing controllers to obtain an informative data set.

SSI 1s the most desirable condition, since prediction-error
methods can be applied without modification.

"Accuracy" Error caused by bias and variance issues (e.g.,
choice of model structure, input signal magnitudes and
excitation, presence of noise, number of model parameters,
duration of experimental test)

23
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H(q)
l v(t)
— P(q —>O+ >
u(t) @ i y(?)

True Plant: y(t) = p(q)u(t) + H(q)a(?)
Plant Model: y(t) pP(q)u(t) + pe(q)e(t)

e Assume that y(t), u(t), and v(t) are stationary (or “quasi-stationary”) as
before. a(t) is white noise;

e Our goal is to obtain p(q) and p.(q) as estimates for p(q) and H(q), re-
spectively.

e p.(q) is commonly referred to as the “noise” model. e(t) = y(t) —y(t|t — 1)
i1s the one-step-ahead prediction error.

24
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True Plant: y(t)
Plant Model: y(t) = p(q)u

|
!
—~
KK
~—
I~
N~
~—
_|_
=
KK
~—
@
—~
~
~—

t) + Pe(q)e(t)

Consider prefiltered input/output data

Asymptotically (as the number of observations N — c0), the least-squares esti-
mation problem can be written as:

N
T 17
min lim N E e2 () :mm—/ b, . (w)dw

p.pe N—oo N < ppe 2m )

where ®. ., the prefiltered prediction-error spectrum is

er

_ L)

P e

(Ip — B]*®u(w) + 2Re ((p — p)H* (/) Pua(w)) + |H(e™)*0?)
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_ L))

P e

(Ip = pI*®u(w) + 2Re ((p — D) H™ (') Pya(w)) + [H (™) [*07)

Input signal power ®,(w). The input signal must have sufficient power over
the frequency range of importance to the control problem.

Choice of prefilter L(q). The prefilter acts as a frequency-dependent weight
on the estimation problem that can be used to influence the goodness of
fit in selected portions of the model’s response.

Structure of p. Expanding the model set (e.g. by increasing model order)
decreases bias.

Structure of p.. Can act as a weight similar to prefiltering, and potentially
introduce undesirable bias if not properly specified. Autoregressive terms
(A(q) or D(q)) will emphasize the goodness-of-fit at high frequencies.

Noise spectrum ®,(w) = |H(e’*)|?c?%. If noise dynamics differ substantially
from plant dynamics, a trade-off between fitting to p and fitting to p. will
result whenever A(q) # 1.

Crosspectrum ®,,(w). Correlation between the input and disturbance (as a
result of closed-loop operation or operator intervention) may result in bias.

26
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Consistent prediction-error estimation, i.e., as N — oo

|

min lim — g e*(t) = o2
ppe N—oo N
1=

p(q) — plg)  Pe(q) — H(q) with probability 1

is achieved when the following are true:

1. The model structure for p(q) and p.(q) describes the true plant. A suitable
model structure must be selected.

2. u(t) shows persistent excitation. The autocovariance matrix I',, for the
input signal u(t) must be of full rank for dimensions corresponding to the
order of the models p and p.. An equivalent statement is that the power
spectrum of u(t) have nonzero power (®,(w) # 0) over the number of
frequencies corresponding to the model order.

Note: The theory does not require u(t) and a(t) to be uncorrelated sequences
(i.e., pua(k) = 0 for all k); however, if the input and the disturbance are uncor-
related, p(q) can be consistently estimated by p(q) despite an erroneous model
structure for p.(q). This has practical benefits.
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Caveats for Closed-Loop Data

- Consistent estimation of p(z) requires correct knowledge
of both the plant and noise model structure (unlike
consistent estimation under open-loop conditions with
uncorrelated input and disturbance, which allows for an
erroneous noise model).

- a "perfect” fit to closed-loop or correlated data may result
from an erroneous model

- Information contents of the data affected by the
presence of feedback (we will examine this in greater
detail later).

- The asymptotic variance of estimated models generally
increases under closed-loop conditions in comparison

with open-loop (Gevers, Ljung, Van den Hof, 2001% )
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Classical Feedback Control Structure

LY

y

The responses of the control system are
characterized by the closed-loop transfer functions:

y = pe(1+pe) ' r+ (1+pc) ' d
nr+ed

uw = c(l+pe)tr—c(l+pe)td
plir — i d
(1+pc)r—(1+pc)'d
= €r—ed

®
|
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Closed-loop System Identification - Signal
Injection Points

1) at the manipulated variable (after the controller

output) B
To Workspace

Ud 1] T
Step Fcni
r | <t _,I@_, (2:0.904) | B+ | _0.096 >
” —> (z-1) » ’

Step Fen Sumi  Gaini Sum2 z-0.904 To Workspace
Dis. Zero-Pole

2) at the Setpoint Dis. Transfer Fcn

We must examine the closed-loop transfer functions between
the signal injection points and u in order to gain understand
how controller tuning impacts the information content on the

S

iInput signal.
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Feedback-Only Closed-Loop Identification

2
up = (1= 1 (7 0P, + [P0 + 1+ el lePD,)
(&
The effect of (1 + pc). Bias will be present in closed-loop
identification even if uy, r, and v are uncorrelated
and p and p. are independently parametrized. For
frequencies where ®, predominates, ®.,, is minimized
(i-e., ®., ~ 0) when

- often 1/c is not
b= 1 causal, hence this is
C not fully observed.

For frequencies where &, /®, > 1 or ®,/®, > 1
then unbiased estimation of p is possible

p=p
The closed-loop transfer functions p~—'n and €. These will

either attenuate or amplify portions of the external
signals ug and r.
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Understanding C-L Signal Injection Pts
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e

One cycle of the PRBS time input signal Sensitivity = (1 +pc)'1, p=50, m=5, ywt = 1

1F T T T T T 10" : :
L ) Sl
o B10° | st = SEESN _ i
o ///,,/ P
o) P e
0f El T
Sanil T |
-0.5+ 510 _,-/‘/ nge n . —_— uwt = 20
| Sensitivity (epsilon) | — =3
----- - uwt=05
-1 1 1 L 1 1 1 L 1 L L 1()'2 ; L 5 L - )
0 2 4 6 8 10 12 14 16 18 20 10° 10 10 10
Time[Min] Frequency[Rad/Min]
- « -
Power Spectrum of the PRBS input 10" inv(p)*eta = c(1+pc)
0 fel
107 - 5107 | i
o
iy 3
< 2
£ 4 |
g— 10
102+ <
107 ‘ ‘
‘ 10" 10° 10’ 102

10°
Radians/Min
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Variance Considerations - Direct Approach

For large n (model order) and large N (number of data), the asymp-
totic covariance for the unbiased model estimate is:

-1
p(ejw) n Py(w) Pue(w)
Cov Bo(e1) Nq)y(w) {@au(w) o2
®, = Input Power Spectrum
®, = Disturbance Power Spectrum = |H(e")|*c?
®,, = ;. = Crosspectrum between u(t) and a(t)

One can directly solve for the (1 1) element to obtain

2

n 0,

- %l
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For the case of u; and r as external signals, uncorrelated with v,
n  ®,(w) n b, (w) )
N oY w) N \[p~'nlP,(w) + |e[Py,(w)

Variance is still a function of the noise-to-input signal power, except
that the input signal power 1s now influenced by control action.

Covp(el?) ~

Comparing the output spectrum for closed-loop operation
b, = |p|*@S*" + |e*®,

with that from open-loop operation
PPN = |p®, + B,

one can conceivably generate closed-loop data that reduces the vari-
ance of the output signal without increasing the variance of p. This
will require, however, a larger (external) input signal magnitude in
the closed-loop experiment than that required from an open-loop
experiment.
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Example 1: No Noise, Unconstrained

Example: First-Order Delay Model. Consider the plant
6—018

pls) = s+ 1

sampled at T = 0.1. We will consider the following:

e PRBS input design using 7 = 7 = 1.05 minutes, oz = 2

dom — 'dom T

and 3, = 3, leading to switching time Ty, = 1.4 minutes, 4 shift
registers (n, = 4) and a 21 minute total cycle length (NT,).

e unconstrained MPC control for p =50, m =5, ' =1 and A = 20,
3, and 0.5 at both signal injection points.
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Signal Injection, Manipulated Variable
Time-Domain Viewpoint

Introduce PRBS changes at the manipulated variable

e Controlled Variable Response
. T T

Solid: slow tuning
s Dashed: medium (similar
to open-loop) tuning

Time

Manipulated Variable Response

) B - | | Dashed-dotted: fast tuning
1L h |'=\11 . i |
Y O o7 oemroms=ss Ee L |
e e B | =2 |
——————— uwt = 0.5
2r E— Reference | |
_3 | | | |
0 5 10 15 20 25

Time

Aggressive tuning attenuates the low frequency portion of the input signal; greater
emphasis given to initial-time (high frequency) information at the expense of
long-time/steady-state information.
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Signal Injection, Setpoint, Time-Domain Viewpoint

Introduce PRBS at the controlled variable setpoint

Controlled Variable Response; External Signal at Setpoint

1.5 T T T T
T Tl TN [T )
0.5f B Y AP N 1
=0 I‘-\\\ -"I /’/ /I\/ﬁ\\\\\"’// ‘| ‘\\\ -II, II ‘ \\\\ ' — uwt = 20 |
0L VAN A = am=3 |7
| ﬁ\\‘_ _-/ “L,J‘ l‘\,, N ; S uwt = 0.5 ) ) )
e | | L reeence ] Solid: slow tuning
o 5 oo 20 25 Dashed: medium (similar
5 Manipulated Variable Response tO Open-|00p) tun|ng
iR . Dashed-dotted: fast tuning

0 5 10 15 20 25
Time

Aggressive tuning amplifies the high-frequency portion of the input signal; tuning
the closed-loop similar to open-loop, however, does not introduce substantial

controller bias into the input signal.
I
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Example 2: Unconstrained, with Noise

Consider the same first-order plant as before:

6—013

y(s) = juls) + ()

sampled at T' = 0.1. We will consider the following:

e PRBS input design using 74, = 7k = 1.05 minutes, a; = 2

and 3, = 3, leading to switching time T, = 1.4 minutes, 4 shift
registers (n, = 4) and a 21 minute total cycle length (NTy,).

e PRBS input magnitude +1.5 (at the setpoint) and £1.0 (at the
manipulated variable). Two cycles of data collected.

e unconstrained MPC control for p =50, m =5, ' =1 and A =
0.5 (for manipulated variable injection) and A = 3 (for setpoint
variable injection).

e White measurement noise with identical variance introduced in

both cases.
. EEESSESSSSS—S————SSSS
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Example 2 Data

Signal Injection at the Manipulated Variable
(with an aggressive controller):

Controlled Variable Response
1.5 T T T

1+

0.5

1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45
Time

Manipulated Variable Response
T T T T
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Example 2 Data (Continued)

Signal Injection at the Setpoint (with a
moderately tuned controller)

Controlled Variable Response; External Signal at Setpoint
T T T T T T

3
2 -
1 -
)
-1+
-2+
_3 1 1 1 1 1 1 1 1
(0] 5 10 15 20 25 30 35 40 45
Time
5 Manipulated Variable Response
T T T T
1
0 -
(aV]
>
-1
-2
-3 I
o 5 10 15 20 25 30 35 40 45
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Example 2, Parameter Estimation Results

Step Response
I

1.5
true plant
<«——— Box-Jenkins [2222 1] ]
1L (manipulated) Box-Jenkins
[22221]
(setpoint)
05l | ARX [4 4 1]
' (setpoint)

ol 94— ARX[441] ]

(manipulated)

-0.5F 1

-1 | | | | | | |

0 0.5 1 1.5 2 2.5 3 3.5 4

Time

Model Step Response Comparison
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ITCLI: An Interactive Tool for Closed-Loop |dentification

IEEE-TCSIAC

' 4+ | @ aer.ual.es/ITCLI/

IEEE-TCMHCS ASUBB9 BBVA YouTube Amazon

Wikipedia

ITCLI: An Interactive Tool for Closed-Loop

Identification
by J.L. Guzman, D. Rivera, S. Dormido, and M. Berenguel

The Interactive Tool for Closed-Loop Identification (ITCLI) is an interactive
software tool for understanding SISO closed-loop identification using prediction-
error techniques. The tool enables an interactive evaluation regarding how bias

and variance effects

play a role in identification under closed-loop

circumstances. The role of external signal design, choice of model structure,
controller tuning during identification testing, and signal injection points (at
either the manipulated variable or the setpoint) all under the presence of
autocorrelated disturbances are considered. The software is developed using
Sysquake and is provided as a stand-alone executable version in mutilple

operating environments.
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y(t) = p(q) (u(t) +ni(t)) + na(t)

® One output signal, one manipulated input signal, and two

unmeasured white noise disturbances (at the input and output,
respectively).

o The effect of the input disturbance is a correlated noise signal.

e Currently configured for:
- the plant as a fifth-order system, and

- a closed-loop feedback system with PI-PID-PID with filter

controllers tuned using the Internal Model Control (IMC)
tuning rules and i-pIDtune.
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y(t) = p(q) (u(t) +ni(t)) + na(t)

Fifth-order System Unit Step Response
T T

15

e Unit step response for the fifth-order system evaluated in ITCLI.
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Manipulation Mode Edit
Input signal
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ITCLI: An Interactive Tool for Closed-Loop Identification

Signal injection
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ITCLI: An Interactive Tool for Closed-Loop Identification

Manipulation Mode Edit Info
Input signal
ARX [] arvax B o€ [ By [Jss [Jcra X r T
o _Raxd X 0e (184 [1ss C] orr Input signal parameters A
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ITCLI: An Interactive Tool for Closed-Loop ldentification

LEESE = b

Manipulation Mode Edit Info
Input signal
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e No external signal; disturbance-driven excitation only.

47



@ CSEL Furron

Control Systems Engineering Laboratory ARIZONA STATE UNIVERSITY

Closed-Loop Identification: Indirect Approach
Uy v

0 C *:é " p *»éfy»

For the closed-loop system shown above (let r = 0)

_ p(?)
M= 1 e

= pe(2)ud(t) + va(t)

In the indirect approach, an open-loop transter function estimate for
pe (Der) is estimated from measured ug and y. Using knowledge of
the transfer function c(z), an estimate of the plant model p(z) is
obtained:

v(t)

1+ p(2)c(z)

~ o ﬁcl(z)
p(z) =1 c(2)pa(2)
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Comments on the Indirect Approach
Paraphrased from Ljung (1997)

- Any method (nonparametric, pem, etc.) can be applied to
closed-loop data in this approach.

- Exact knowledge of the compensator model (c(z)) is critical

- Consistent estimation of p(z) is enabled without any
knowledge of the structure of the noise model

- Covariance properties of the estimate the same as in the
direct approach

- Indirect methods based on alternative parametrizations (e.g.
coprime, dual Youla) may result in numerical or algebraic
benefits, but do not affect the basic statistical properties of the

estimate.
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Closed-Loop ldentification Schemes (Cont.)

- Two-stage Approach: ldentify the closed-loop system
between the external signal and the input (which is in
effect an open-loop system); retrive the "noise-free"
signal u(t), without making use of the controller transfer

function!

- [terative Refinement Approach: Ilterate between
closed-loop identification (from either the direct or
iIndirect approaches) and controller design to arrive at a
final model (and control system). Allows for
control-relevant, closed-loop identification!

I— 1 |
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Closed-Loop Identification Summary

» an external signal is required in the loop, otherwise strong
identifiability conditions are not met.

- controller action introduces correlation between the
measurement and affects the frequency content of the input
signal, influencing both bias and variance of the estimate

- the purpose feedback is to make the closed-loop system
iInsensitive to open-loop model changes. As a result,
closed-loop data typically has less information about the plant
than open-loop data (Ljung)

- signal injection at the setpoint (r), under a not-too-aggressive
feedback controller, seems sensible from a theoretical
standpoint.

51



Control Systems Engineering Laboratory ARIZONA STATE UNIVERSITY

Closed-Loop Identification Summary, Continued

* Prediction-error methods applied in a direct fashion with a
suitable noise model structure give consistent estimates with
optimal accuracy. This is Ljung's recommended approach.

- Be careful with nonparametric methods or other approaches
(subspace methods, instrumental variables, PEM with wrong
noise models) when using closed-loop data (Ljung).

- Indirect methods offer the opportunity to use both
nonparametric or PEM methods without knowledge of the
noise model. The controller must be known a priori. (Ljung)

» In practice, even a simple controller such as PID may not

exactly behave according to its mathematical form. This
argues against the use of indirect methods.
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