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• What is system identification?

• Basic problems in closed-loop system identification.

• Understanding bias and variance in closed-loop system 
identification using prediction error methods.

• Some example problems; Interactive Tool for Closed-Loop 
Identification (ITCLI) illustration. 

• Summary and conclusions.
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• “Identification is the determination of on the basis of input and 
output,  of a system within a specified class of systems to which 
the system under test is equivalent.”   - Lofti Zadeh, 1962.

• System identification focuses on the modeling of dynamical 
systems from experimental data.
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time
time

time
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(Ljung and Glad, 1994)

• System identification is an inherently iterative procedure;  however, 
some iterations are more expensive (and demanding) than others.

Construct the
experiment and

collect data

Polish and
present data

Should data
be preprocessed?

Choice of model
structure

Fit the model
to the data

Validate
the model

Can the model
be accepted?

Data
not OK

Model structure
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No
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Processed data

Data

• Statistically
• Physically
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ident Graphical User Interface shown; command-line functionality also available.
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Education (ITSIE)

Written using Sysquake (www.calerga.com) in collaboration with Professors José Luis Guzmán and 
Manuel Berenguel Soria (Univ. of Almería, Spain) and Sebastián Dormido Bencomo (UNED, Spanish 
National Distance Learning University, Madrid).  Paper in Advances in Engineering Software.
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 Identification (ITCRI)

• Interactive Tool for Control-Relevant Identification (ITCRI), developed by 
Álvarez, Guzman, Rivera, Dormido, and Berenguel.  Paper published in 
Control Engineering Practice.

7



Control Systems Engineering Laboratory
CSEL i-pIDtune

(Tool for integrated system ID and IMC-PID control)

• Presented at PID’12, Brescia, Italy.
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• To be presented at the 2014 IFAC World Congress, Cape Town.
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Interactive Tool for Closed-Loop
Identification (ITCLI)
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Identification

• Eliminates the need to put the control loop on “manual” during 
identification testing.

• Makes it possible to perform identification while keeping the 
plant within operating limits.

• Enables “plant-friendly” identification of open-loop unstable 
systems.

11

Closed-loop identification does not necessarily imply 
“something for nothing”



Control Systems Engineering Laboratory
CSEL

12

Problems in Closed-Loop Identification
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• crosscorrelation will exist between disturbance (d) 
and input (u) as a result of the control
  

• control action will introduce additional bias by "eating 
away" at excitation
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Ljung's Thoughts:
From "Identification in Closed Loop: Some Aspects on Direct 

and Indirect Approaches,"  invited paper for SYSID '97, 
Fukuoka, Japan.

• "... the basic problem in closed-loop identification (is this):  the 
purpose of feedback is to make the sensitivity function small, 
especially at frequencies with disturbances and poor system 
knowledge. Feedback will thus worsen the measured data's 
information about the system at these frequencies."
 

• There are no difficulties, per se, with closed-loop data; simply 
that in practical use, the information content is less
 

• One could make closed-loop experiments with good 
information contents (but poor control performance)
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Why closed-loop data can be bad for 
system identification
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• Consider a first-order system  controlled by a discrete-time 
PI controller subject to nonstationary random disturbance.

• Input/output data (y,u) from this control system is used to fit 
a Finite Impulse Response model (order 50).
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Closed-loop identification data
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>> th = arx([y  u],[0 50 1]);
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• Model representation similar to correlation analysis (CRA).

• Estimation is a linear regression problem.

• Because of fast sampling, nb is usually of high order
(20 coefficients or more)

• Noise model is unity (i.e., no autocorrelated noise model is 
supported in FIR estimation)

18

y(t) = B(q)u(t� nk) + e(t)

B(q) = b1 + b2q
�1 + · · · + bnbq

�nb+1



Control Systems Engineering Laboratory
CSEL

19

Model Simulation - Closed-loop Data
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>> ysim = idsim(u,th)
>>plot([y  ysim])
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Model Step Response
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Conclusion: the closed-loop data set (as presented) is not  
informative for system identification.
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Practical Considerations in Closed-Loop Identification

1.  How does one generate an informative data set for 
identification when the plant is in the closed-loop?

2.  What is the most appropriate signal injection point?

3.  How  should the controller be tuned  for c-l 
identification ?

4.  What are the best model structures/parametrizations 
for c-l identification?

5. How can design variables (i.e., prefiltering) improve the 
results of c-l identification?
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Closed-Loop Identification Schemes

• Direct Approach: Apply prediction-error methods to (y,u) 
the same way as in open-loop operation ignoring 
possible feedback and not using the external signals (r 
or ud)         
          
 

• Indirect Approach: Identify the closed-loop system 
between the external signal and the output (which is in 
effect an open-loop system); retrive the plant from this 
estimate, making use of the known controller transfer 
function.
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Basic Issues in Closed-Loop  System Identification

"Identifiability"  (Soderstrom et al,  1976, Gustavsson et al., 
1977) Two types of identifiability conditions exist:
                   
• System Identifiable (SI).  Data is informative for certain model 
structures if an external input is not entered into the loop.
 
• Strong System Identifiable (SSI).  Needs an external signal or 
changing controllers to obtain an informative data set.

SSI is the most desirable condition, since prediction-error
methods can be applied without modification.

"Accuracy"  Error caused by bias and variance issues (e.g., 
choice of model structure, input signal magnitudes and 
excitation, presence of noise, number of model parameters, 
duration of experimental test)
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System Identification

+

+
p(q)

H(q)

u(t) y(t)

�(t)

a(t)

True Plant: y(t) = p(q)u(t) + H(q)a(t)
Plant Model: y(t) = p̃(q)u(t) + p̃e(q)e(t)

• Assume that y(t), u(t), and �(t) are stationary (or “quasi-stationary”) as
before. a(t) is white noise;

• Our goal is to obtain p̃(q) and p̃e(q) as estimates for p(q) and H(q), re-
spectively.

• p̃e(q) is commonly referred to as the “noise” model. e(t) = y(t)� ŷ(t|t�1)
is the one-step-ahead prediction error.
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True Plant: y(t) = p(q)u(t) + H(q)a(t)
Plant Model: y(t) = p̃(q)u(t) + p̃e(q)e(t)

Consider prefiltered input/output data

yF (t) = L(q)y(t) uF (t) = L(q)u(t)

Asymptotically (as the number of observations N ⇥⇤), the least-squares esti-
mation problem can be written as:

min
p̃,p̃e

lim
N⇤⌅

1
N

N⇤

i=1

e2
F (t) = min

p̃,p̃e

1
2�

⌅ �

��
�eF (⇤)d⇤

where �eF , the prefiltered prediction-error spectrum is

�eF (⇤) =
|L(ej⇥)|2

|p̃e(ej⇥)|2
�
|p� p̃|2�u(⇤) + 2Re

�
(p� p̃)H⇥(ej⇥)�ua(⇤)

⇥
+ |H(ei⇥)|2⇥2

a

⇥

25



Control Systems Engineering Laboratory
CSEL Understanding Bias (Continued)

�eF (⇥) =
|L(ej⇥)|2

|p̃e(ej⇥)|2
�
|p� p̃|2�u(⇥) + 2Re

�
(p� p̃)H�(ej⇥)�ua(⇥)

⇥
+ |H(ei⇥)|2�2

a

⇥

Input signal power �u(⇥). The input signal must have su⇧cient power over
the frequency range of importance to the control problem.

Choice of prefilter L(q). The prefilter acts as a frequency-dependent weight
on the estimation problem that can be used to influence the goodness of
fit in selected portions of the model’s response.

Structure of p̃. Expanding the model set (e.g. by increasing model order)
decreases bias.

Structure of p̃e. Can act as a weight similar to prefiltering, and potentially
introduce undesirable bias if not properly specified. Autoregressive terms
(A(q) or D(q)) will emphasize the goodness-of-fit at high frequencies.

Noise spectrum ��(⇥) = |H(ej⇥)|2�2
a. If noise dynamics di⇥er substantially

from plant dynamics, a trade-o⇥ between fitting to p̃ and fitting to p̃e will
result whenever A(q) ⇥= 1.

Crosspectrum �ua(⇥). Correlation between the input and disturbance (as a
result of closed-loop operation or operator intervention) may result in bias.
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Consistent prediction-error estimation, i.e., as N �⇥

min
p̃,p̃e

lim
N�⇥

1
N

N�

i=1

e2(t) = ⇥2
a

p̃(q)� p(q) p̃e(q)� H(q) with probability 1

is achieved when the following are true:

1. The model structure for p̃(q) and p̃e(q) describes the true plant. A suitable
model structure must be selected.

2. u(t) shows persistent excitation. The autocovariance matrix �u for the
input signal u(t) must be of full rank for dimensions corresponding to the
order of the models p̃ and p̃e. An equivalent statement is that the power
spectrum of u(t) have nonzero power (⇥u(⇤) ⇤= 0) over the number of
frequencies corresponding to the model order.

Note: The theory does not require u(t) and a(t) to be uncorrelated sequences
(i.e., �ua(k) = 0 for all k); however, if the input and the disturbance are uncor-
related, p(q) can be consistently estimated by p̃(q) despite an erroneous model
structure for p̃e(q). This has practical benefits.
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Caveats for Closed-Loop Data
• Consistent estimation of p(z) requires correct knowledge 

of both the plant and noise model structure (unlike 
consistent estimation under open-loop conditions with 
uncorrelated input and disturbance, which allows for an 
erroneous noise model).   

• a "perfect" fit to closed-loop or correlated data may result 
from an erroneous model   

• Information contents of the data affected by the 
presence of feedback (we will examine this in greater 
detail later).

• The asymptotic variance of estimated models generally 
increases under closed-loop conditions in comparison 
with open-loop (Gevers, Ljung, Van den Hof, 2001)
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Classical Feedback Control Structure

r yu

d

e+ + +
PC

The responses of the control system are 
characterized by the closed-loop transfer functions:

y = p̃c(1 + p̃c)−1 r + (1 + p̃c)−1 d

= η̃ r + ε̃ d

u = c(1 + p̃c)−1 r − c(1 + p̃c)−1 d

= p̃−1η̃ r − p̃−1η̃ d

e = (1 + p̃c)−1 r − (1 + p̃c)−1 d

= ε̃ r − ε̃ d
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Closed-loop System Identification - Signal 
Injection Points
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ΦeF =
(
|p − p̃|2

(
|p−1η|2Φr + |ε|2Φud

)
+ |1 + p̃c|2|ε|2Φν

) |L|2

|p̃e|2

The effect of (1 + p̃c). Bias will be present in closed-loop
identification even if ud, r, and ν are uncorrelated
and p̃ and p̃e are independently parametrized. For
frequencies where Φν predominates, ΦeF is minimized
(i.e., ΦeF ≈ 0) when

p̃ = −1
c

For frequencies where Φud
/Φν # 1 or Φr/Φν # 1

then unbiased estimation of p̃ is possible
p̃ = p

The closed-loop transfer functions p−1η and ε. These will
either attenuate or amplify portions of the external
signals ud and r.

Feedback-Only Closed-Loop Identification

- often 1/c is not 
causal, hence this is 
not fully observed.
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Variance Considerations - Direct Approach
For large n (model order) and large N (number of data), the asymp-
totic covariance for the unbiased model estimate is:

Cov



p̃(ejω)
p̃e(ejω)



 ∼
n

N
Φν(ω)




Φu(ω) Φua(ω)
Φau(ω) σ2

a





−1

Φu ≡ Input Power Spectrum
Φν ≡ Disturbance Power Spectrum = |H(eiω)|2σ2

a

Φua = Φ∗
au ≡ Crosspectrum between u(t) and a(t)

One can directly solve for the (1,1) element to obtain

Covp̃(ejω) ∼ n

N
Φν(ω)




σ2

a

σ2
aΦu − |Φua(ω)|2
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(Continued)
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For the case of ud and r as external signals, uncorrelated with ν,

Covp̃(ejω) ∼ n

N

Φν(ω)
Φext

u (ω)
=

n

N




Φν(ω)

|p−1η|2Φr(ω) + |ε|2Φud
(ω)





Variance is still a function of the noise-to-input signal power, except
that the input signal power is now influenced by control action.

Comparing the output spectrum for closed-loop operation

Φy = |p|2Φext
u + |ε|2Φν

with that from open-loop operation

Φopen
y = |p|2Φu + Φν

one can conceivably generate closed-loop data that reduces the vari-
ance of the output signal without increasing the variance of p̃. This
will require, however, a larger (external) input signal magnitude in
the closed-loop experiment than that required from an open-loop
experiment.
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Example 1: No Noise, Unconstrained

Example: First-Order Delay Model. Consider the plant

p(s) =
e−0.1s

s + 1

sampled at T = 0.1. We will consider the following:

• PRBS input design using τH
dom = τL

dom = 1.05 minutes, αs = 2
and βs = 3, leading to switching time Tsw = 1.4 minutes, 4 shift
registers (nr = 4) and a 21 minute total cycle length (NTsw).

• unconstrained MPC control for p = 50, m = 5, Γ = 1 and Λ = 20,
3, and 0.5 at both signal injection points.
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Signal Injection, Manipulated Variable
Time-Domain Viewpoint

Introduce PRBS changes at the manipulated variable

Aggressive tuning attenuates the low frequency portion of the input signal; greater 
emphasis given to initial-time (high frequency) information at the expense of 
long-time/steady-state information.
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Signal Injection, Setpoint, Time-Domain Viewpoint
Introduce PRBS at the controlled variable setpoint

Aggressive tuning amplifies the high-frequency portion of the input signal;  tuning 
the closed-loop similar to open-loop, however, does not introduce substantial 
controller bias into the input signal.
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Example 2: Unconstrained, with Noise
Consider the same first-order plant as before:

y(s) =
e−0.1s

s + 1
u(s) + n(s)

sampled at T = 0.1. We will consider the following:

• PRBS input design using τH
dom = τL

dom = 1.05 minutes, αs = 2
and βs = 3, leading to switching time Tsw = 1.4 minutes, 4 shift
registers (nr = 4) and a 21 minute total cycle length (NTsw).

• PRBS input magnitude ±1.5 (at the setpoint) and ±1.0 (at the
manipulated variable). Two cycles of data collected.

• unconstrained MPC control for p = 50, m = 5, Γ = 1 and Λ =
0.5 (for manipulated variable injection) and Λ = 3 (for setpoint
variable injection).

• White measurement noise with identical variance introduced in
both cases.
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(with an aggressive controller):
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Example 2 Data (Continued)
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• One output signal, one manipulated input signal, and two 
unmeasured white noise disturbances (at the input and output, 
respectively).

• The effect of the input disturbance is a correlated noise signal.

• Currently configured for:

- the plant as a fifth-order system, and

- a closed-loop feedback system with PI-PID-PID with filter 
controllers tuned using the Internal Model Control (IMC) 
tuning rules and i-pIDtune.

43

y(t) = p(q) (u(t) + n1(t)) + n2(t)
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• Unit step response for the fifth-order system evaluated in ITCLI.
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• Signal injection at setpoint with sensibly tuned controller.
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ITCLI:  Case 1
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• Signal injection at manipulated variable with very detuned loop.
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ITCLI:  Case 2
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• No external signal;  disturbance-driven excitation only.
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ITCLI:  Case 3
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Closed-Loop Identification: Indirect Approach

r
C

e

ud

+
+

u yP
++

pppp

For the closed-loop system shown above (let r = 0)

y(t) =
p(z)

1 + p(z)c(z)
ud(t) +

1
1 + p(z)c(z)

ν(t)

= pcl(z)ud(t) + νcl(t)

In the indirect approach, an open-loop transfer function estimate for
pcl (p̃cl) is estimated from measured ud and y. Using knowledge of
the transfer function c(z), an estimate of the plant model p̃(z) is
obtained:

p̃(z) =
p̃cl(z)

1 − c(z)p̃cl(z)
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Comments on the Indirect Approach
Paraphrased from Ljung (1997)

• Any method (nonparametric, pem, etc.) can be applied to 
closed-loop data in this approach. 

• Exact knowledge of the compensator model (c(z)) is critical
• Consistent estimation of p(z) is enabled without any 

knowledge of the structure of the noise model
• Covariance properties of the estimate the same as in the 

direct approach
• Indirect methods based on alternative parametrizations (e.g. 

coprime, dual Youla) may result in numerical or algebraic 
benefits, but do not affect the basic statistical properties of the 
estimate.
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Closed-Loop Identification Schemes (Cont.)

• Two-stage Approach: Identify the closed-loop system 
between the external signal and the input (which is in 
effect an open-loop system); retrive the "noise-free" 
signal u(t), without making use of the controller transfer 
function!        
          
 

• Iterative Refinement Approach: Iterate between 
closed-loop identification (from either the direct or 
indirect approaches) and controller design to arrive at a 
final model (and control system). Allows for 
control-relevant, closed-loop identification!
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Closed-Loop Identification Summary
• an external signal is required in the loop, otherwise strong 

identifiability conditions are not met.  
 

• controller action introduces correlation between the 
measurement and affects the frequency content of the input 
signal, influencing both bias and variance of the estimate
 

• the purpose feedback is to make the closed-loop system 
insensitive to open-loop model changes.  As a result, 
closed-loop data typically has less information about the plant  
than open-loop data (Ljung)  
 

• signal injection at the setpoint (r), under a not-too-aggressive 
feedback controller, seems sensible from a theoretical 
standpoint.
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Closed-Loop Identification Summary, Continued

• Prediction-error methods applied in a direct fashion with a 
suitable noise model structure give consistent estimates with 
optimal accuracy.  This is Ljung's recommended approach.
 

• Be careful with nonparametric methods or other approaches 
(subspace methods, instrumental variables, PEM with wrong 
noise models) when using closed-loop data (Ljung).
 

• Indirect methods offer the opportunity to use both 
nonparametric or PEM methods without knowledge of the 
noise model.  The controller must be known a priori. (Ljung)

• In practice, even a simple controller such as PID may not 
exactly behave according to its mathematical form.  This 
argues against the use of indirect methods.
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Thank you for your attention!
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