

Intelligent systems for anomaly detection of real cases for production optimizing

José Luis Calvo Rolle UNED 2025 - Madrid

Summary

Digital Twin research line CEMI (Navantia-UDC)

Based on model

Based on One-class techniques

5

6

2

3

Our proposals for Fault Detection accomplishing

Conclusions and future works

Anomaly detection, fault detection, ... to anomaly explanation

- What is an anomaly?
- What is a fault?
- What is the difference between an anomaly and a failure?
- What is anomaly/fault detection?
- Is the anomaly/fault explanation possible?
- The Fault-Tolerant Systems

3/31/2025

Anomaly detection, fault detection, ... to anomaly explanation

Under a general point of view, anomaly detection, or fault detection, basically is the outlier identification as an observation, event, or data point that deviates from what is normal or expected, making it inconsistent with the rest of the data set.

Detecting anomalies or faults can have very important benefits.

Is it a simple task?

Anomaly detection, fault detection, ... to anomaly explanation

It could be easy:

Anomaly detection, fault detection, ... to anomaly explanation

It could be not easy:

Where's Wally?

Anomaly detection, fault detection, ... to anomaly explanation

What happens if the problem is, for instance:

- Variable
- Not linear
- Multivariable dependent
- •

Anomaly detection, fault detection, ... to anomaly explanation

Andre Agassi VS Boris Becker

https://www.puntodebreak.com/2020/04/30/lengua-becker-secreto-mejor-guardado-Agassi

Anomaly detection, fault detection, ... to anomaly explanation

The unconscious secret of Boris Becker's tongue

3/31/2025

Anomaly detection, fault detection, ... to anomaly explanation

Anomaly detection has a long history in the field of statistics.

Analysts and scientists studied datasets and specially graphs, looking for anything that seemed abnormal.

Intelligent systems for anomaly detection of real cases for production optimizing

DUED

3/31/2025

Anomaly detection, fault detection, ... to anomaly explanation

It is a very important field in control systems.

Anomaly detection, fault detection, ... to anomaly explanation

Under a paradigm of control systems, in addition to the detection of faults and anomalies, the next issues are very important:

- Isolation
- Recovery

3/31/2025

This leads to the very important subfield in the area of control systems called entitled "Fault detection, isolation, and recovery (FDIR)".

Minor preassemblies parts manufacturing cell

3/31/2025

Minor preassemblies parts manufacturing cell

Transfer of materials into the welding cell

Minor preassemblies parts manufacturing cell

Artificial Vision Gantry

Minor preassemblies parts manufacturing cell

3D camera

2D Image of the Tray

Point Cloud of the Tray

3/31/2025

Minor preassemblies parts manufacturing cell

2D Monochromatic Image of the Tray

Zoom of the Processed Point cloud

Point Cloud of the Tray

Processed Point cloud of the elements in the tray

Intelligent systems for anomaly detection of real cases for production optimizing

DUED

3/31/2025

Minor preassemblies parts manufacturing cell

חשבם

3/31/2025

Minor preassemblies parts manufacturing cell

Object Detection RT-DETR

Intelligent systems for anomaly detection of real cases for production optimizing

UNIVERSIDADE DA CORUÑA

Minor preassemblies parts manufacturing cell

Surface model

CAD Models

3/31/2025

Minor preassemblies parts manufacturing cell

Matching Results

DUED

Minor preassemblies parts manufacturing cell

Orientation of the pieces

Minor preassemblies parts manufacturing cell

Optical Character Recognition

3/31/2025

Intelligent systems for anomaly detection of real cases for production optimizing

25

Minor preassemblies parts manufacturing cell

Defect detection

DUED

3/31/2025

Minor preassemblies parts manufacturing cell

Base plates pick up

27

3/31/2025

Minor preassemblies parts manufacturing cell

Reinforcements pick up

Intelligent systems for anomaly detection of real cases for production optimizing

WIVERSIDADE DA CORUÑA

3/31/2025

DUED

Minor preassemblies parts manufacturing cell

Reinforcements pick up

3/31/2025

Minor preassemblies parts manufacturing cell

Application of traditional/intelligent techniques for the detection of failures or anomalies in welding

Intelligent systems for anomaly detection of real cases for production optimizing

UNIVERSIDADE DA CORUÑA

Laboratory tests (Due to Navantia confidenciality)

Intel RealSense D455 Depth Camera

Defective Piece with Highlighted Defects in Orange

3/31/2025

Images of the four different 3D printed pieces.

Our proposals for Fault Detection accomplishing

Our proposals for Fault Detection accomplishing

Techniques and implementation

What kind of FD techniques we use:

- Traditional ones based on statistical methods
- Based on intelligent techniques
- The implementation attending to the topology:
 - Based on models
 - Based on One-class techniques

Based on model

Based on model

Anomaly detection based on virtual sensors

DUED

35

Based on model

Anomaly detection based on virtual sensors

Hybrid intelligent model block.

• Modeling process.

Anomaly detection based on virtual sensors

Hybrid intelligent model block.

• Modeling process.

Anomaly detection based on virtual sensors

Hybrid intelligent model block.

- Modeling process \rightarrow Clustering \rightarrow Kmeans

Anomaly detection based on virtual sensors

Hybrid intelligent model block.

- Modeling process \rightarrow Modeling \rightarrow MLP

Anomaly detection based on virtual sensors

Hybrid intelligent model block.

- Modeling process \rightarrow Modeling \rightarrow LS SVR

 $y = f(X) = w^T \delta(x) + b$

Anomaly detection based on virtual sensors

Hybrid intelligent model block.

- Modeling process \rightarrow Modeling \rightarrow Validation

Anomaly detection based on virtual sensors

Hybrid intelligent model block.

- Modeling process \rightarrow Modeling \rightarrow Best configuration

Anomaly detection based on virtual sensors

Virtual sensor fault detection block.

- Virtual sensor fault detection block \rightarrow Fault block

Anomaly detection based on virtual sensors

Virtual sensor fault detection block.

• Virtual sensor fault detection block \rightarrow Counter block

Anomaly detection based on virtual sensors

Virtual sensor fault detection block.

- Virtual sensor fault detection block \rightarrow Output selector block

Anomaly detection based on virtual sensors

Bicomponent mixing system \rightarrow Real case of application

• Virtual sensor for fault detection, isolation and data recovery for bicomponent mixing machine monitoring

Intelligent systems for anomaly detection of real cases for production optimizing

Anomaly detection based on virtual sensors

Bicomponent mixing system

- Monitored variables.
 - Mixing proportions.
 - Two pump speeds.
 - Three flows.
 - Four pressures.
- Dataset: 8549 samples.

Intelligent systems for anomaly detection of real cases for production optimizing

Anomaly detection based on virtual sensors

Bicomponent mixing system

- Experiments and results.
 - Model inputs.
 - Output flow, Flow 2 (t, t-1, t-2).
 - Pumps pressures 1 and 2 (t, t-1, t-2).
 - Flowmeters pressures 1 and 2 (t, t-1, t-2).
 - Flow 1 (t-1, t-2).
 - Model Output.
 - Flow 1 (t).
 - Techniques
 - Kmeans \rightarrow Clusters: 1:1:10.
 - MLP \rightarrow Hidden layer neurons: 1:1:15 / Different activation functions.
 - LS-SVR \rightarrow Self-tuned optimization toolbox.

Anomaly detection based on virtual sensors

Bicomponent mixing system

- Experiments and results.
 - Best configuration.
 - 7 clusters.
 - MSE = $0,131 \cdot 10-3$.

		Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5	Cluster 6	Cluster 7
	Technique	ANN-1	ANN-1	ANN-7	ANN-5	ANN-3	ANN-3	ANN-8
	MSE	0.165·10 ⁻³	0.159 . 10 ⁻³	0.097·10 ⁻³	0.55·10 ⁻³	0.183.10 ⁻³	0.163·10 ⁻³	0.122·10 ⁻³

optimizing

DUED

Intelligent systems for anomaly detection of real cases for production optimizing

Anomaly detection based on One-class techniques

- One-class:
 - Density estimation methods.
 - Reconstruction methods.
 - Boundary methods.

Anomaly detection based on One-class techniques

- One-class:
 - Density estimation methods.
 - Reconstruction methods.
 - Boundary methods.

Anomaly detection based on One-class techniques

- One-class:
 - Density estimation methods.
 - Reconstruction methods.
 - Boundary methods.

Anomaly detection based on One-class techniques

- One-class:
 - Density estimation methods.
 - Reconstruction methods.
 - Boundary methods.

Anomaly detection based on One-class techniques

Anomaly detection based on One-class techniques

Implementation

• One-class techniques.

• ACH.

Anomaly detection based on One-class techniques

Implementation

- One-class techniques.
 - ACH.

Intelligent systems for anomaly detection of real cases for production optimizing

Anomaly detection based on One-class techniques

- One-class techniques.
 - ACH.

Anomaly detection based on One-class techniques

- One-class techniques.
 - ACH.

Anomaly detection based on One-class techniques

- One-class techniques.
 - ACH.
 - Autoencoder.

Anomaly detection based on One-class techniques

Implementation

- One-class techniques.
 - ACH.
 - Autoencoder.
 - SVM.

DUED

Intelligent systems for anomaly detection of real cases for production optimizing

Anomaly detection based on One-class techniques

Implementation

- One-class techniques.
 - ACH.
 - Autoencoder.
 - SVM.
 - PCA.

DUED

Intelligent systems for anomaly detection of real cases for production optimizing

Anomaly detection based on One-class techniques

- One-class techniques.
 - ACH.
 - Autoencoder.
 - SVM.
 - PCA.
- Validation

		Predicted class		
		Positive	Negative	
Real class	Positive	True Positives (<i>TP</i>)	False Negatives (<i>FN</i>)	TP+FN=P
	Negative	False Positives (<i>FP</i>)	True Negatives (<i>TN</i>)	FP+TN=N

Anomaly detection based on One-class techniques

Implementation

- One-class techniques.
 - ACH.
 - Autoencoder.
 - SVM.
 - PCA.
- Validation

DUED

Anomaly detection based on One-class techniques

- One-class techniques.
 - ACH.
 - Autoencoder.
 - SVM.
 - PCA.
- Validation
- Best Configuration

Anomaly detection based on One-class techniques

Anomaly detection based on one-class intelligent techniques over a control level plant \rightarrow Real case of application

Intelligent systems for anomaly detection of real cases for production

Anomaly detection based on One-class techniques

Dataset

- Target set: electric valve closed: 5400 samples.
- Anomalies.
 - Electric valve open 10 %: 5400 samples.
 - Electric valve open 30 %: 5400 samples.
 - Electric valve open 50 %: 5400 samples.
 - Electric valve open 70 %: 5400 samples.
 - Electric valve open 90 %: 5400 samples.

DUED

Anomaly detection based on One-class techniques

Experiments and results.

- Classifier inputs.
 - Control signal.
 - Error.
 - Plant coefficients.
- Data conditioning.
 - 0 to 1.
 - Z-Score.
- ACH.
 - Expansion parameter λ : 0.9, 1, 1.1.
 - Projections: 5, 10, 50, 100, 500, 1000.
- Autoencoder.
 - Neurons in the hidden layer: 1:1:4.
- SVM.
 - Outlier percentage: 0:1:10.
 - Kernel function: Gaussian.
- Tested anomalies. Valve open (%):
 - 10:20:90.

Anomaly detection based on One-class techniques

Experiments and results.

Projections	λ	AUC	Training time (min)	
1000	1,1	99,78	13,25	
Hidden layer neurons	Conditioning	AUC	Training time (min)	
4	Z-Score	99,49	8,83	
Outlier percentage	Conditioning	AUC	Training time (min)	
5	0-1	99,35	1,04	

Conclusions and future work

Conclusions and future works

- Anomaly and fault detection are very important in general terms
- Explain the anomaly or fault could be complex, but very useful
- Fault-Tolerant Systems are a challenge
- These techniques could have application in some different fields (i.e., traceability, quality assurance, operational control, ...)
- Future works:

DUED

- The real time implementation of systems that have a very high computational cost, like vision-based ones.
- To apply these techniques over day a day common people problems, like water management

ſ	
Ŀ	

SIDADE DA CORUÑA

Intelligent systems for anomaly detection of real cases for production optimizing

71

Thank you

Intelligent systems for anomaly detection of real cases for production optimizing

Intelligent systems for anomaly detection of real cases for production optimizing

José Luis Calvo Rolle

UNED 2025 - Madrid

