

Sistemas de control reseteado: fundamentos y aplicaciones

Alfonso Baños Dpto. Informática y Sistemas Universidad de Murcia

Madrid, 5 Mayo 2023

Sistemas híbridos: motivación y ejemplos
 Sistemas de control reseteado
 El controlador PI+CI
 Ejemplos de aplicación
 Conclusiones

Dinámica de eventos discretos ("switching") + Dinámica temporal : Sistema híbrido

Otro ejemplo: Un oscilador reseteado

Un sistema dinámico impulsivo:

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 2\delta \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} , \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \notin S$$
$$\begin{pmatrix} x_1^+ \\ x_2^+ \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} , \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in S$$

Conjunto de reseteo (eventos): $\mathcal{S} = \{x \in \mathbb{R}^2 : x_1 < 0, x_2 = 0\}$

Dinámica de eventos discretos (reseteo) + Dinámica temporal : Sistema híbrido

Otro ejemplo: Controlador reseteado (Controlador de Horowitz)

Dinámica de eventos discretos (reseteo) + Dinámica temporal : Sistema híbrido

Otro ejemplo: Control de un "quantum bit" (qubit)

$$\begin{cases} \begin{pmatrix} \dot{\mathbf{r}} \\ \dot{T} \\ \dot{q} \end{pmatrix} = \begin{pmatrix} (A + \mathbf{B}\mathbf{u}_q)\mathbf{r} \\ -1 \\ 0 \end{pmatrix} , (\mathbf{r}, T, q) \in C \\\\ \begin{pmatrix} \mathbf{r}^+ \\ T^+ \\ q^+ \end{pmatrix} \in \begin{cases} \begin{pmatrix} R_1(\mathbf{r}) \\ T_1 \\ 1 \end{pmatrix} , v \in [0, \frac{1 + \epsilon \mathbf{r} \cdot \mathbf{n}}{2}] \\ , (\mathbf{r}, T, q) \in D \\\\ \begin{pmatrix} R_{-1}(\mathbf{r}) \\ T_{-1} \\ -1 \end{pmatrix} , v \in [\frac{1 + \epsilon \mathbf{r} \cdot \mathbf{n}}{2}, 1] \\\\ v \sim \mu(\cdot) \end{cases}$$

Dinámica de eventos discretos (reseteo) + Dinámica temporal : Sistema híbrido

A. Baños. Hybrid Control Systems. 1 Motivation and basic concepts

7

Hybrid inclusions

 $\begin{array}{ll} \dot{x} \in F(x) &, x \in C \\ x^+ \in G(x) &, x \in D \end{array}$

- switching of the (time-driven) dynamics
- state jumps
- events may depends on time/state/external inputs

Applications in science and engineering are ubiquitous

- Embedded systems
- Computation, communication and control
- Biological systems
- Ciberphysical Systems
- Quantum systems
- 0

...

Hybrid automata

A. Baños. 1 Sistemas híbridos: motivación y ejemplos

An Introduction to Hybrid **Dynamical Systems**

Wassim M. Haddad. VijaySekhar Chellaboina, and Sergey G. Nersesov

and Robustness

UNIVERSIDAD DE

MURCIA

Rafal Goebel Ricardo G. Sanfelice Andrew R. Teel

8

Sistemas híbridos: motivación y ejemplos
 Sistemas de control reseteado
 The PI+CI controller
 Cases study and Applications

Conclusions

The Clegg integrator (1958)

"A nonlinear integrator for servomechanisms"

- **Basic idea**: the integrator state/output is set to zero (reset) at those instants in which the integrator input is zero.
- CI as a hybrid system:

• Inputs must be continuous signals with isolated zeros (e.g. Bohl functions)

The Clegg integrator (1958)

"A nonlinear integrator for servomechanisms"

• CI gives extra phase lead in comparison to an (linear) integrator.

$$e \longrightarrow CI \longrightarrow v$$
 $e(t) = Asin(\omega t) \rightarrow v(t) = \frac{1.6}{\omega}Asin(\omega t - 38.1^{\circ}) + \cdots$

The Clegg integrator (1958)

"A nonlinear integrator for servomechanisms"

$$u(t) = \sin(\omega t) \to y(t) = \frac{1.62}{\omega} \sin(\omega t - 38.1^{\circ}) + \frac{0.54}{\omega} \sin(3\omega t - \phi_3) + \frac{0.32}{\omega} \sin(5\omega t - \phi_5) + \cdots$$

Horowitz's FORE (1975)

• FORE gives phase lead over a (linear) first order controller:

$$\begin{cases} \dot{v}(t) = -av(t) + Ke(t), & e(t) \neq 0\\ v(t^+) = 0, & e(t) = 0 \end{cases} \qquad FORE(\omega) = \frac{K}{a + j\omega} \left(1 + j\frac{2}{\pi}\frac{\omega^2}{a^2 + \omega^2}(1 + e^{-a\frac{\pi}{\omega}})\right)$$

UNIVERSIDAD DE

MURCIA

Main motivation:

Overcoming Fundamental Limitations of LTI controllers

• **Basic Idea**: It is NOT possible to satisfy arbitrary design specifications with a feedback LTI controller, even with ideal plants (without uncertainty and without actuators limitations)

- Basic design specifications:
 - Well-posedness
 - Stability
 - Disturbance rejection
 - Reference tracking
 - Robustness

Main motivation:

Overcoming Fundamental Limitations of LTI controllers

Frequency domain: The Area Formula (Bode/Horowitz)

Time domain: another "Area Formula"

$$\int_0^\infty \log |S(j\omega)| d\omega = 0$$

(for L(s) with poles-zeros excess of 2 or more, and no open-loop poles in RHP)

$$\int_0^\infty e(t)dt = 0$$

(for L(s) having 2 or more integrators)

Main motivation:

Overcome Fundamental Limitations of LTI controllers

$$\int_0^\infty \log |S(j\omega)| d\omega < 0 \text{ (FORE)}$$

 $\int_0^\infty \log |S(j\omega)| d\omega \ge 0 \text{ (any LTI controller)}$

No overshoot (even for fast responses) !

LTI controllers produce overshoot (bigger in faster responses) !

A hybrid/impulsive control system

$$P: \begin{cases} \dot{\mathbf{x}}_p(t) = A_p \mathbf{x}_p(t) + B_r e(t) \\ y(t) = C_p \mathbf{x}_p(t) \end{cases}$$

$$R: \begin{cases} \dot{\mathbf{x}}_r(t) = A_r \mathbf{x}_r(t) + B_r e(t), & e(t) \neq 0\\ \mathbf{x}_r(t^+) = A_\rho \mathbf{x}_r(t), & e(t) = 0\\ v(t) = C_r \mathbf{x}(t) + D_r e(t) \end{cases}$$

(Flow equation) (Jump equation)

- Base system (no resets) is LTI
- Zero-crossing resetting law: e(t) = 0 (other laws are possible as well)
- Reset events are (closed-loop) state-dependent
- Closed-loop system: state-dependent impulsive differential equation

$$\begin{cases} \dot{\mathbf{x}}(t) = A\mathbf{x}(t), & \mathbf{x}(t) \notin \mathcal{M} \\ \mathbf{x}(t^+) = A_R \mathbf{x}(t), & \mathbf{x}(t) \in \mathcal{M} \end{cases}$$
(Flow equation) (Jump equation)

• The reset set *M* defines reset instants,

$$\mathcal{M} = \{ \mathbf{x} \in \mathbb{R}^n : C\mathbf{x} = 0, (I - A_R)\mathbf{x} \neq 0 \}$$

• And the after-reset set $M_{\rm R}$

$$\mathcal{M}_R = A_R \mathcal{M}$$

ν

Algunos controladores reseteados

$$R: \begin{cases} \dot{\mathbf{x}}_r(t) = A_r \mathbf{x}_r(t) + B_r e(t), & e(t) \neq 0 \\ \mathbf{x}_r(t^+) = A_\rho \mathbf{x}_r(t), & e(t) = 0 \\ v(t) = C_r \mathbf{x}(t) + D_r e(t) \end{cases}$$
(Flow equation)
(Jump equation)

Stability (Lyapunov)

• A more general hybrid/impulsive dynamical system:

$$\begin{cases} \dot{\mathbf{x}}(t) = A\mathbf{x}(t), & C\mathbf{x}(t) \neq 0\\ \mathbf{x}^+(t) = B\mathbf{x}(t), & C\mathbf{x}(t) = 0 \end{cases}$$

... is **stable** if for any $\varepsilon > o$ there exist $\delta > o$ such as

 $\|\mathbf{x}_0\| \le \delta \Rightarrow \|\mathbf{x}(t)\| \le \epsilon$, for any t > 0

- ... is **attractive** if $\mathbf{x}(t) \to 0$ as $t \to \infty$
- ... is **asymptotically stable** if it is stable and attractive
- The continuous base system (without reset actions, only flowing) is asymptotically stable if and only if A es Hurwitz-stable
- The discrete system (without continuous dynamics, only jumping) is asymptotically stable if and only if **B** es Schur-stable
- An open problem: The hybrid/impulsive system, with parameters A, B, and C, is asymptotically stable if and only if ???

Stability (Lyapunov)

The problem is **non-trivial**: reset can stabilize an unstable base system, ... But also can destabilize a stable base system !

Some sufficient conditions for stability:

- independent on the reset instants: H_{β} -condition (Bekker-Hollot-Chait'2000)
- dependent on the reset instants: "dwell-time"-based conditions

• In these simple cases, with constant reset interval Δ , stability problem reduces to check if the matrix $A_{\mathbf{R}}e^{A\Delta}$ is Schur-stable.

Example: Reset is periodic with period $\Delta = 3.16$ and in particular:

UNIVERSIDAD DE

MURCIA

$$\mathbf{x}_1(k+1) = -0.30\mathbf{x}(k)$$

$$\lambda \{A_R e^{A\Delta}\} = \{-0.30, -0.73, 0\}$$

- If A is Hurwitz-stable then there always exists a **minimum** dwell-time such as the reset system is asymptotically stable
- if A is not Hurwitz-stable then the reset system is stable if the dwell-time is in some **interval**.

- 1. Sistemas híbridos: motivación y ejemplos
- 2. Sistemas de control reseteado
- 3. El controlador PI+CI
- 4. Ejemplos y aplicaciones Conclusiones

3. The PI+CI controller

(Baños and Vidal'2007-2012)

- A simple structure easily implementable, with few parameters
- Application target: process control
- Hopefully good transitory and steady state properties
- Also antiwindup behavior
- "Simple" tuning rules
 - -Tune the base PI controller
 - -Select the reset percentage to reduce overshoot
- A fast response with no excessive overshoot may be obtained, overcoming LTI compensation limitations.
- Very intuitive for manual tuning: reset appears as a single parameter p_{reset}
- CI: A "derivative" action without increasing cost of feedback

First order system plus deadtime (FOPDT)

$$P(s) = \frac{k}{\tau s + 1} e^{-hs}$$

1. First, the base PI is tuned by using (for example) the IMC/SIMC rule:

- **2**. Then, the parameter $p_{\rm r}$ is tuned with ...:
 - ... low values for "delay-dominant" systems
 - ... middle-high values for "lag-dominant" systems
 - ... $p_r = 1$ for integrating systems

Integrating plus deadtime systems (IPDT) – "integrating systems"

$$P(s) = \frac{1}{s}e^{-1.69s}$$

PI-base (SIMC):
$$k_p = 0.3, \tau_I = 13.5$$

 $p_r = 1$

	Reference		Disturbance		Stability margins	
	IAE (s)	ITAE (s^2)	IAE (s)	ITAE (s^2)	φ _m (°)	A_m (dB)
PI	6.43	62.80	4.48	328.3	48.6	24.28
PI+CI	4.17	20.44	4.48	328.3	48.4	23.9

- 1. Motivation and basic concepts
- 2. Reset control systems stability
- 3. El controlador PI+CI
- 4. Ejemplos y Aplicaciones
- Conclusiones

Example: First order systems (reset band, time-varying reset rate)

$$P: \left\{ egin{array}{l} \dot{x_p}(t) = -a_0 x_p(t) + b_0 v(t) \ y(t) = x_p(t) \end{array}
ight.$$

It is possible to obtain a finite settling-time !

Step references tracking

Step disturbances rejection

Example: Second order systems (reset band, time-varying reset rate)

$$P(s) = \frac{b_0}{s^2+a_1s+a_0}$$

Step references tracking

Step disturbances rejection

Example: IPDT Systems (time-varying reset band, time-varying reset action)

Application: Level control system (variable reset band, variable reset action)

• IAE-Tracking error is reduced 40 % with respect to a well-tuned PI controller

Application: Level control system (variable reset band, variable reset action)

• IAE-Disturbance rejection is improved a 50% with respect to a well-tuned PI

A. Baños. 4. Ejemplos y aplicaciones

Aplicación	Laboratorio	Industria	Referencia
Supresión de vibraciones para estructuras flexibles	х		(Bobrow <i>et al.</i> , 1995)
Control de velocidad de sistemas electromecánicos	х		(Zheng <i>et al.</i> , 2000)
Control de discos duros	x		(Wu et al., 2007) (Guo <i>et al.</i> , 2011) (Li <i>et al.</i> , 2011)
Propulsión marina	x		(Bakkeheim et al., 2008)
Posicionamiento de actuadores piezoeléctricos	х		(Zheng et al., 2007)
Teleoperación	х		(Fernández et al., 2011) (Falcón et. al., 2013)
Campos de colectores solares*	X (Univ. Almería, Plataforma solar de Almería-CIEMAT)		(Vidal et al., 2008)
Control de pH en línea*	Х		(Carrasco y Baños, 2012) (Baños y Davó, 2014)
Control de temperatura en intercambiadores de calor*	х		(Vidal y Baños, 2010) (Moreno et al., 2013)
Control de nivel*	x		(Davó y Baños, 2016)
Control de recirculación de gases de escape	х		(Panni et al., 2014)
Cocinas de inducción**	x	X (Universidad de Zaragoza, BSH Electrodomésticos)	(Paesa, 2011)
Control de grúas puente	x		(Raimúndez et al. 2012)
Servomotores	Х		(HosseinNia et al., 2013)
Motores síncronos con excitación de imán permanente*	simulación (Universidad de Vigo)		(Delgado et al, 2014)
Control de boost converters *	X (Universidad Politécnica de Cataluña)		(Nair et al., 2018)

CONCLUSIONS

- Reset is a simple way to improve control systems performance, overcoming LTI compensation fundamental limitations
- Stability is a main concern, since reset may have a destabilising effect
- It is not of general use, closed loop response must have overshoot for reset to be effective
- Reset control systems are hybrid systems, modelled as impulsive differential equations/hybrid dynamical systems/hybrid automata
- Reset may be modelled as state-dependent event
- PI+CI has been found very effective for lag dominant and integrating systems
- Improvements may be achieved by a variable reset band and a variable reset ratio. Also with reset and hold strategies for delay-dominant systems
- Many open directions for research, both in theory and practice

Advances in Industrial Control

Alfonso Baños Antonio Barreiro

Reset Control Systems

