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Un ejemplo sencillo: termostato

q 2 {on, o↵}

Estado (tiempo continuo): T 2 Reals

Dinámica de eventos discretos (“switching”) + Dinámica temporal : Sistema híbrido  

Eventos:  

Estado (discreto/lógico):

Dinámica temporal: fq 2 {fon, fo↵}

Un autómata híbrido

Dinámica de eventos discretos: q = on ⟷ q = of f

q = on AND T ≤ Tmax, ⋯

A. Baños. 1 Sistemas híbridos: motivación y ejemplos
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Otro ejemplo: Un oscilador reseteado
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Conjunto de reseteo (eventos): 

Un sistema dinámico impulsivo:
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Dinámica de eventos discretos (reseteo) + Dinámica temporal : Sistema híbrido  

𝒮 = {x ∈ ℝ2 : x1 < 0,x2 = 0}
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A. Baños. 1 Sistemas híbridos: motivación y ejemplos

Otro ejemplo: Controlador reseteado (Controlador de Horowitz)
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Figure 1: A reset control system, with an LTI continuous-time plant and a feedback reset controller. The feedback
loop is perturbed by errors both in the measurement (noise n) and the actuator (disturbance d); r is a reference
signal.

proposed reset controller will be analyzed in detail; since the controller setup will be based on a
modification of the Clegg integrator ([13]), this is first described.

2.1. A Clegg integrator wih a zero-crossing detection mechanism
A basic and well-known reset controller is the Clegg integrator ([13],[24]), which will be adapted

in this work by attaching a zero-crossing detection procedure based on the discrete state q 2 {1,�1},
and also adding an extra input. Besides the trigger input e 2 R (usually the error signal in the case
of an output feedback control system), the input signal eCI 2 R is proposed1 (Fig. 2). Using (1),
the result is a new model of the Clegg integrator in the HI framework. It is given by:
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where (xr, q) 2 O is the CI state, (eCI , e) 2 R2 is its input, and v = xr is its output, and the flow
set C and the jump set D are given by

C = {(xr, q, eCI , e) 2 O ⇥R2 : qe  0} (4)

and
D = {(xr, q, eCI , e) 2 O ⇥R2 : qe � 0}, (5)

respectively. Because the CI discrete state q is constant when flowing, its flow equation is not
explicitly shown. When (xr, q, eCI , e) goes from C to D either crossing or jumping through their
boundary, a jump of the CI state may be performed. This ensures the detection of a zero-crossing
even if the signal e has jump discontinuities, such as due to noise measurement n (see Fig. 3),
which is a clear advantage over previous reset controllers that have a zero-crossing resetting law
([10, 3, 8]), that only detects zero-crossings when the signal error is continuous.

By using CI as a building block, the two input signals, eCI and e, can be used to model more
complex reset controllers. For example, for the FORE of Fig. 2, eCI = e� v. This capability will
be fully exploited by higher-order reset controllers in the next Section.

1It is worth noting that the original Clegg integrator is recovered from CI by removing the discrete state q and
performing eCI = e.
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ẋr = eCI , (xr, q, eCI , e) 2 C
✓

x
+
r

q
+

◆
=

✓
0 0
0 �1

◆✓
xr

q

◆
, (xr, q, eCI , e) 2 D

(3)

where (xr, q) 2 O is the CI state, (eCI , e) 2 R2 is its input, and v = xr is its output, and the flow
set C and the jump set D are given by

C = {(xr, q, eCI , e) 2 O ⇥R2 : qe  0} (4)

and
D = {(xr, q, eCI , e) 2 O ⇥R2 : qe � 0}, (5)

respectively. Because the CI discrete state q is constant when flowing, its flow equation is not
explicitly shown. When (xr, q, eCI , e) goes from C to D either crossing or jumping through their
boundary, a jump of the CI state may be performed. This ensures the detection of a zero-crossing
even if the signal e has jump discontinuities, such as due to noise measurement n (see Fig. 3),
which is a clear advantage over previous reset controllers that have a zero-crossing resetting law
([10, 3, 8]), that only detects zero-crossings when the signal error is continuous.

By using CI as a building block, the two input signals, eCI and e, can be used to model more
complex reset controllers. For example, for the FORE of Fig. 2, eCI = e� v. This capability will
be fully exploited by higher-order reset controllers in the next Section.

1It is worth noting that the original Clegg integrator is recovered from CI by removing the discrete state q and
performing eCI = e.

4

Figure 5: Flow persistence: (left) Reset control system with a Horowitz reset controller (taken from ([24]); (right)
Simulation for a unit step reference, with the reset control system initially at point A: (xw, xp, xr1 , xr2) = (1, 0, 0, 0),
q = �1 and with ⌧ = 0 (solid lines correspond to flows, an dotted lines to jumps from A to B, from C to D, · · · ).

of multiple solutions for some initial conditions, this is, for example, the case of points (0, 1, 0) and
(0,�1, 0). This non-deterministic behavior will be explored in the next example.

Example 3.3. Consider the reset control system of Fig. 5, composed of a Horowitz reset controller
R and a first-order plant. Its flow persistence for an exogenous input w = r corresponding to a step
reference (no disturbances present) will be analyzed, as will the influence of ⌧m on the reset control
system solutions. For some ⌧m > 0, the time regularized reset control system is given by (20), with
state (x, q, ⌧) being x = (xw, xp, xr1 , xr2), and

A =

0

BB@

0 0 0 0
0 �1 1 1
4 �4 0 0
1 �1 0 0

1

CCA , AR =

0

BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

1

CCA , C =
�
1 �1 0 0

�
, (23)

Here the reset controller output is v = xr1 + xr2 and the error signal is e = xw � xp. The sets Ccl

and Dcl are depicted in Fig. 5 as green and red regions, respectively, in the e-v planes corresponding
to q = 1 and q = �1. Note that the flow and jump sets are given by (21)-(22), and thus flowing
is, in principle, possible in the set Dcl. It is chosen an initial point A corresponding to a unit step
reference, with the controller and plant at rest; then an initial jump from A to B is performed.
Because the reset control system is flow persistent, there exist a solution that is unbounded in the
t-direction; this solution is shown in Fig. 5 where jumps from A to B, from C to D, · · · are visible (it
is the unique solution for the initial point A). In this case, the solution is not flowing in the set Dcl

since it always flows during a time larger than ⌧m before jumps are enabled. This is true as far as
⌧m < ⌧

?
m ⇡ 1.4416; in fact, without time regularization, the reset interval sequence is periodic with

a fundamental period ⌧
?
m after the second jump. This simple structure of the reset instants sequence

11

Dinámica de eventos discretos (reseteo) + Dinámica temporal : Sistema híbrido  
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A. Baños. 1 Sistemas híbridos: motivación y ejemplos

Otro ejemplo: Control de un “quantum bit” (qubit)

Dinámica de eventos discretos (reseteo) + Dinámica temporal : Sistema híbrido  
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A. Baños. Hybrid Control Systems

Hybrid automata Hybrid inclusions

Hybrid behaviour: 
switching of the (time-driven) dynamics  
state jumps 
events may depends on time/state/external inputs

Applications in science and engineering are ubiquitous 
Embedded systems 
Computation, communication and control 
Biological systems 
Ciberphysical Systems 
Quantum systems 
…

⇢
ẋ 2 F (x) , x 2 C
x+ 2 G(x) , x 2 D

A. Baños. Hybrid Control Systems. 1 Motivation and basic concepts
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A. Baños. 1 Sistemas híbridos: motivación y ejemplos

Fuente: Scopus, TITLE-ABS-KEY ( "hybrid control"  OR  "reset control"  OR  "impulsive control" ) 



!9

1. Sistemas híbridos: motivación y ejemplos 
2. Sistemas de control reseteado  
3. The PI+CI controller 
4. Cases study and Applications 
Conclusions 

A. Baños. Sistemas de control reseteado: fundamentos y aplicaciones



!10

• Basic idea: the integrator state/output is set to zero (reset) at those instants in 
which the integrator input is zero.  

•  CI as a hybrid system:  

• Inputs must be continuous signals with isolated zeros (e.g. Bohl functions) 

The Clegg integrator (1958) 
“A nonlinear integrator for servomechanisms” 

A. Baños. 2. Sistemas de control reseteado 

⇢
v̇(t) = e(t) , e 6= 0 _ v = 0
v(t+) = 0 , e = 0 ^ v 6= 0
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The Clegg integrator (1958) 
“A nonlinear integrator for servomechanisms” 

• CI gives extra phase lead in comparison to an (linear) integrator.

{
CI output (first harmonic)

52o

Integrator Output

I(j!) =
1

j!
=

1

!
e�j90�

e(t) = Asin(!t) ! v(t) =
1.6

!
Asin(!t� 38.1�) + · · ·

CI(j!) =
1

j!
(1 + j

4

⇡
) ⇡ 1.62

!
e�j38.1�

A. Baños. 2. Sistemas de control reseteado 
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The Clegg integrator (1958) 
“A nonlinear integrator for servomechanisms” 

u(t) = sin(!t) ! y(t) =
1.62

!
sin(!t� 38.1�) +

0.54

!
sin(3!t� �3) +

0.32

!
sin(5!t� �5) + · · ·

A. Baños. 2. Sistemas de control reseteado 
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Horowitz’s FORE (1975) 

• FORE gives phase lead over a (linear) first order controller: 
  
 

FORE(!) =
K

a+ j!

✓
1 + j

2

⇡

!
2

a2 + !2
(1 + e

�a ⇡
! )

◆⇢
v̇(t) = �av(t) +Ke(t), e(t) 6= 0
v(t+) = 0, e(t) = 0

CI ve

A. Baños. 2. Sistemas de control reseteado 
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Main motivation:  
Overcoming Fundamental Limitations of LTI controllers 

• Basic Idea: It is NOT possible to satisfy arbitrary design specifications with a 
feedback LTI controller, even with ideal plants (without uncertainty and without 
actuators limitations) 

• Basic design specifications:  
– Well-posedness 
– Stability 
– Disturbance rejection 
– Reference tracking 
– Robustness

A. Baños. 2. Sistemas de control reseteado 
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Main motivation:  
Overcoming Fundamental Limitations of LTI controllers 

   

Z 1

0
log|S(j!)|d! = 0

Frequency domain: The 
Area Formula (Bode/Horowitz)                                 

Time domain: another “Area Formula”  

(for L(s) with poles-zeros excess of 2 or more, 
 and no open-loop poles in RHP)

(for L(s) having 2 or more integrators)

A. Baños. 2. Sistemas de control reseteado 
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Main motivation:  
Overcome Fundamental Limitations of LTI controllers

No overshoot (even for fast responses) !
Z 1

0
log|S(j!)|d! < 0 (FORE)

Z 1

0
log|S(j!)|d! � 0 (any LTI controller) LTI controllers produce overshoot (bigger in faster responses) !

A. Baños. 2. Sistemas de control reseteado 



  
• Base system (no resets) is LTI 
• Zero-crossing resetting law: e(t) = 0 (other laws are possible as well) 
• Reset events are (closed-loop) state-dependent  
• Closed-loop system: state-dependent impulsive differential equation 

• The reset set M defines reset instants,   

• And the after-reset set MR
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A hybrid/impulsive control system

P :

⇢
ẋp(t) = Apxp(t) +Bre(t)
y(t) = Cpxp(t)

R :

8
<

:

ẋr(t) = Arxr(t) +Bre(t), e(t) 6= 0 (Flow equation)
xr(t+) = A⇢xr(t), e(t) = 0 (Jump equation)
v(t) = Crx(t) +Dre(t)

MR = ARM

⇢
ẋ(t) = Ax(t), x(t) /2 M (Flow equation)
x(t+) = ARx(t), x(t) 2 M (Jump equation)

M = {x 2 IRn : Cx = 0, (I �AR)x 6= 0}

A. Baños. 2. Sistemas de control reseteado 



Algunos controladores reseteados 
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Full reset/Partial reset

Clegg integrator (1958)

Horowitz FORE (1975)
CI ve

CI

s
F(s)e v

CI

s
KI

KCI

KI

KP

e v

Horowitz reset controller (1974)

PI+CI (2007-2012)

A. Baños. 2. Sistemas de control reseteado 

Reset/Hold (2020)
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R :

8
<

:

ẋr(t) = Arxr(t) +Bre(t), e(t) 6= 0 (Flow equation)
xr(t+) = A⇢xr(t), e(t) = 0 (Jump equation)
v(t) = Crx(t) +Dre(t)

A. Baños. 2. Sistemas de control reseteado 



 Stability  (Lyapunov)  

•    A more general hybrid/impulsive dynamical system:  

… is stable if for any ε > 0 there exist δ> 0 such as 
   

… is attractive if  

… is asymptotically stable if it is stable and attractive 

• The continuous base system (without reset actions, only flowing) is asymptotically 
stable if and only if A es Hurwitz-stable 

• The discrete system (without continuous dynamics, only jumping) is asymptotically 
stable if and only if  B es Schur-stable 

• An open problem: The hybrid/impulsive system, with parameters A, 
B, and C, is asymptotically stable if and only if ???  
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⇢
ẋ(t) = Ax(t), Cx(t) 6= 0
x+(t) = Bx(t), Cx(t) = 0

kx0k  � ) kx(t)k  ✏, for any t > 0

x(t) ! 0 as t ! 1
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Stability (Lyapunov)  

 The problem is non-trivial: reset can stabilize an unstable base system, ... But also can 
destabilize a stable base system ! 

Some sufficient conditions for stability:  

- independent on the reset instants: Hβ -condition (Bekker-Hollot-Chait’2000) 

-  dependent on the reset instants: “dwell-time”-based conditions 

A. Baños. 2. Sistemas de control reseteado 
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• For low order systems reset is periodic, but this is not true in general. 
• In these simple cases, with constant reset interval Δ, stability problem 

reduces to check if the matrix AReAΔ is Schur-stable. 

       

        

Example: Reset is periodic with period                  , 
and in particular:

� = 3.16

x1(k + 1) = �0.30x(k)

• If A is Hurwitz-stable then there always exists a minimum dwell-time such as 
the reset system is asymptotically stable 

• if A is not Hurwitz-stable then the reset system is stable if the dwell-time is in 
some interval. 

�{ARe
A�} = {�0.30,�0.73, 0}

A. Baños. 2. Sistemas de control reseteado 
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3. The PI+CI controller  
(Baños and Vidal’2007-2012) 

• A simple structure easily implementable, with few parameters 
• Application target: process control 
• Hopefully good transitory and steady state properties 
• Also antiwindup behavior 
• “Simple” tuning rules 

–Tune the base PI controller  
–Select the reset percentage to reduce overshoot 

• A fast response with no excessive overshoot may be obtained, overcoming LTI 
compensation limitations.  

• Very intuitive for manual tuning: reset appears as a single parameter preset 

• CI: A “derivative” action without increasing cost of feedback

A. Baños.  3. El controlador PI+CI
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First order system plus deadtime (FOPDT)  

1. First, the base PI is tuned by using (for example) the IMC/SIMC rule: 

2. Then, the parameter pr  is tuned with …:  

- … low values for “delay-dominant” systems 
- … middle-high values for “lag-dominant” systems 
- … pr = 1 for integrating systems  

 

P (s) =
k

⌧s+ 1
e�hs

kp =
⌧

2kh

⌧I = 8h

A. Baños. Reset control systems: 3. The PI+CI controller
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Integrating plus deadtime systems (IPDT) – “integrating systems”  

PI-base (SIMC): 

 

P (s) =
1

s
e�1.69s

kp = 0.3, ⌧I = 13.5

pr = 1

A. Baños. Reset control systems: 3. The PI+CI controller
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A. Baños. Sistemas de control reseteado: fundamentos y aplicaciones
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Example: First order systems (reset band, time-varying reset rate) 

It is possible to obtain a finite settling-time ! 

 

Step references tracking Step disturbances rejection

A. Baños. 4. Ejemplos y aplicaciones
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Example: Second order systems (reset band, time-varying reset rate) 

 

Step references tracking Step disturbances rejection

A. Baños. 4. Ejemplos y aplicaciones
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Example: IPDT Systems (time-varying reset band, time-varying reset action) 

 

A. Baños. 4. Ejemplos y aplicaciones
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Application: Level control system (variable reset band, variable reset action) 
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• IAE-Tracking error is reduced 40 % with respect to a well-tuned PI controller

A. Baños. 4. Ejemplos y aplicaciones
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• IAE-Disturbance rejection is improved a 50% with respect to a well-tuned PI

Application: Level control system (variable reset band, variable reset action) 
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A. Baños. 4. Ejemplos y aplicaciones
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CONCLUSIONS 

• Reset is a simple way to improve control systems performance, overcoming 
LTI compensation fundamental limitations 

• Stability is a main concern, since reset may have a destabilising effect 

• It is not of general use, closed loop response must have overshoot for reset to 
be effective 

• Reset control systems are hybrid systems, modelled as impulsive differential 
equations/hybrid dynamical systems/hybrid automata 

• Reset may be modelled as state-dependent event 

• PI+CI has been found very effective for lag dominant and integrating systems 

• Improvements may be achieved by a variable reset band and a variable reset 
ratio. Also with reset and hold strategies for delay-dominant systems 

• Many open directions for research, both in theory and practice

A. Baños. Reset control systems
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A. Baños. Reset control systems


