Introducción Flagelo plano Alternativas bajo estudio Lo que queda por hacer

# Robots nadadores tipo flagelo bacteriano

Blas M. Vinagre

25 de abril de 2018



#### Índice

- 1 Introducción
- 2 Flagelo plano
  - Formas de onda
  - Propulsión
- 3 Alternativas bajo estudio
  - Actuación distribuida I: Segmentos sólido rígido
  - Actuación distribuida II: Deformación continua
  - Actuación local I: 1 punto de actuación
  - Actuación local I: 2 puntos de actuación
- 4 Lo que queda por hacer



### Robots pequeños

# Swallowing the surgeon

It would be interesting in surgery if you could swallow the surgeon. You put the mechanical surgeon inside the blood vessel and it goes into the heart and "looks" around... other small machines might be permanently incorporated in the body to assist some inadequately-functioning organ.

RICHARD P. FEYMAN 1959 (nobel prize, physics 1965)

e VAMS



### Robots pequeños nadadores



- Micro-robots.
  - Escala micrométrica.
  - Fuerzas viscosas vs. fuerzas inerciales.
- 2 Nano-robots.
  - Escala nanométrica (molecular).
  - Entorno "browniano".
  - Fuerzas interatómicas e intermoleculares.
  - Efectos cuánticos.



- Micro-robots.
  - Escala micrométrica.
  - Fuerzas viscosas vs. fuerzas inerciales
- 2 Nano-robots.
  - Escala nanométrica (molecular).
  - Entorno "browniano".
  - Fuerzas interatómicas e intermoleculares.
  - Efectos cuánticos.



- Micro-robots.
  - Escala micrométrica.
  - Fuerzas viscosas vs. fuerzas inerciales.
- 2 Nano-robots.
  - Escala nanométrica (molecular).
  - Entorno "browniano".
  - Fuerzas interatómicas e intermoleculares.
  - Efectos cuánticos.



- Micro-robots.
  - Escala micrométrica.
  - Fuerzas viscosas vs. fuerzas inerciales.
- 2 Nano-robots.
  - Escala nanométrica (molecular).
  - Entorno "browniano".
  - Fuerzas interatómicas e intermoleculares.
  - Efectos cuánticos.



- Micro-robots.
  - Escala micrométrica.
  - Fuerzas viscosas vs. fuerzas inerciales.
- 2 Nano-robots.
  - Escala nanométrica (molecular).
  - Entorno "browniano".
  - Fuerzas interatómicas e intermoleculares.
  - Efectos cuánticos.



- Micro-robots.
  - Escala micrométrica.
  - Fuerzas viscosas vs. fuerzas inerciales.
- 2 Nano-robots.
  - Escala nanométrica (molecular).
  - Entorno "browniano".
  - Fuerzas interatómicas e intermoleculares
  - Efectos cuánticos.



- Micro-robots.
  - Escala micrométrica.
  - Fuerzas viscosas vs. fuerzas inerciales.
- 2 Nano-robots.
  - Escala nanométrica (molecular).
  - Entorno "browniano".
  - Fuerzas interatómicas e intermoleculares.
  - Efectos cuánticos.



- Micro-robots.
  - Escala micrométrica.
  - Fuerzas viscosas vs. fuerzas inerciales.
- 2 Nano-robots.
  - Escala nanométrica (molecular).
  - Entorno "browniano".
  - Fuerzas interatómicas e intermoleculares.
  - Efectos cuánticos.



Introducción Flagelo plano Alternativas bajo estudio Lo que queda por hacer

#### Su mundo





### El sistema circulatorio llega a cualquier sitio ...

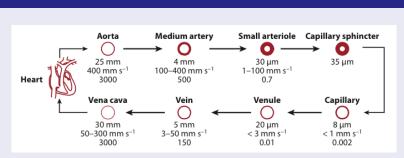



Figura: Sistema circulatorio y Re.



#### **Retos**

- Entendimiento del entorno.
- Cambio de paradigma.
- Fabricación.
- Propulsión.
- Guiado.



### Ecuación de Langevin

$$m\frac{d^2x}{dt^2} = -\zeta \frac{dx}{dt} + \frac{dB(t)}{dt},$$
 (1)

$$m\ddot{x} = -V'(x) - \zeta \dot{x} + \dot{B},\tag{2}$$



### Ecuación de Langevin

$$m\frac{d^2x}{dt^2} = -\zeta \frac{dx}{dt} + \frac{dB(t)}{dt},$$
 (1)

$$m\ddot{x} = -V'(x) - \zeta \dot{x} + \dot{B},\tag{2}$$



### Ecuación de Langevin

### Inercia negligible

$$\zeta \dot{x} = -V'(x) + \dot{B},\tag{3}$$



#### Motor molecular- Motor browniano

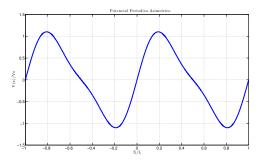



Figura: Potencial periódico asimétrico.



#### Motor molecular- Motor browniano

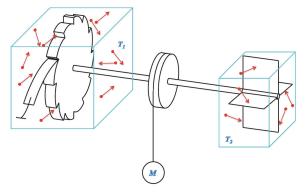



Figura: Trinquete de Feynman.



#### Navier-Stokes

$$Re\frac{d\overrightarrow{V}}{dt} = -\nabla p + \nabla^2 \overrightarrow{V}, \quad Re = \frac{\rho v_s D}{\mu}$$
 (4)



### Re bajo

#### A bajo Re:

- Estamos en un mundo que es o muy viscoso, o muy lento, o muy pequeño.
- Dominado por bajas velocidades y pequeñas escalas.
- El tiempo no importa, solo la configuración.

$$\nabla p = \nabla^2 \overrightarrow{V}$$





### Re bajo

#### A bajo Re:

- Estamos en un mundo que es o muy viscoso, o muy lento, o muy pequeño.
- Dominado por bajas velocidades y pequeñas escalas.
- El tiempo no importa, solo la configuración.

$$\nabla p = \nabla^2 \overrightarrow{V}$$





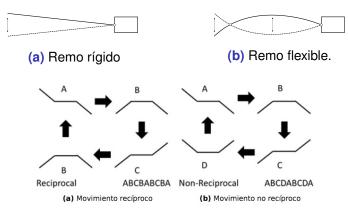



Figura: Movimiento recíproco - no recíproco.



#### Locomoción en altos Re



## Locomoción en bajos Re



#### **Biomimesis**

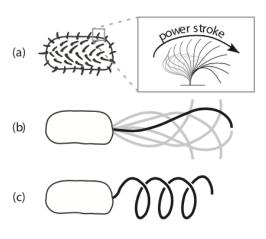
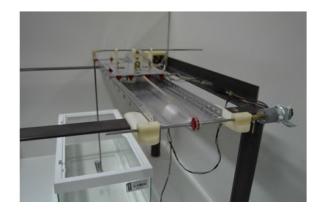






Figura: Flagelos y cilios.

Introducción Flagelo plano Alternativas bajo estudio Lo que queda por hacer

## Helicoidal autopropulsado





## Helicoidal autopropulsado



### Helicoidal propulsión externa





### Helicoidal propulsión externa



#### Formas de onda

## Onda progresiva armónica

$$y(x,t) = c_0 \sin\left(\frac{2\pi}{\lambda}(x - V_p t)\right)$$



#### Formas de onda

## Onda progresiva carangiforme

$$y(x,t)=(c_1x+c_2x^2)\sin\left(rac{2\pi}{\lambda}(x-V_
ho t)
ight)$$



### **Propulsión**

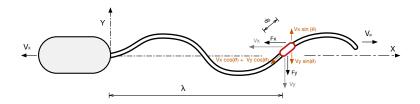
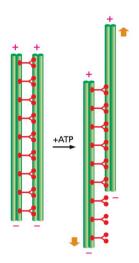


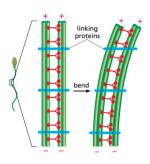

Figura: Propulsión onda plana.



### **Propulsión**

#### **Fuerzas**


$$\frac{dF}{ds} = \frac{(C_N - C_L)\dot{y}y' - V_X(C_L + C_N(y')^2)}{1 + (y')^2},$$
 (8)

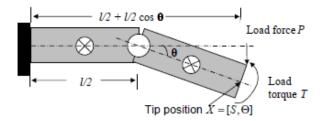

#### Velocidad

$$nF = V_x 6\pi R\mu \tag{9}$$



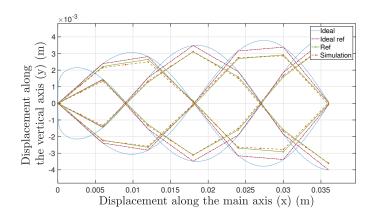
### Mecanismo de propulsión







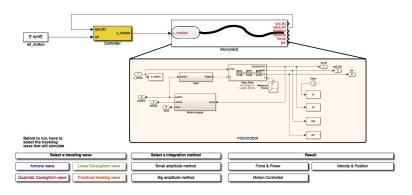

# Actuación distribuida I: Segmentos sólido rígido




#### Elemento básico

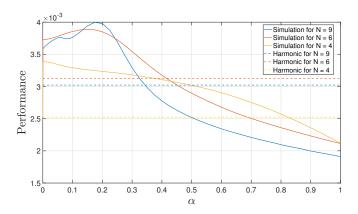





## Descomposición del movimiento

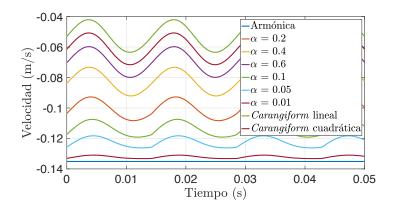





Actuación distribuida I: Segmentos sólido rígido Actuación distribuida II: Deformación continua Actuación local I: 1 punto de actuación Actuación local I: 2 puntos de actuación

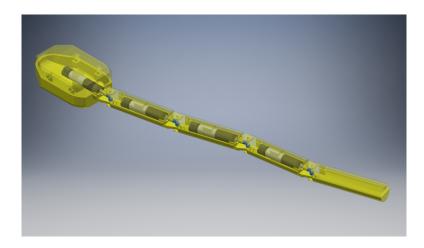
#### Simulador – Analizador






#### Resultados I



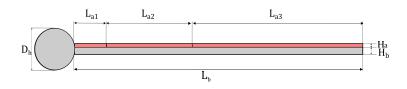



#### Resultados II



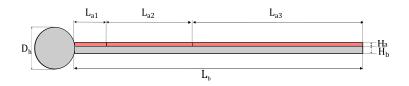


#### Construcción






#### Actuación distribuida II: Deformación continua




#### **Dimensiones**



 $[H_a; L_{a1}; L_{a2}; L_{a3}]$   $[1\mu m; 0,33mm; 0,87mm; 1,8mm]$ 

#### **Dimensiones**



Flagelo

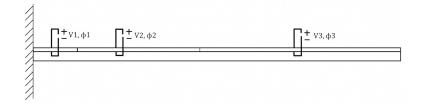
Actuadores

 $[L_b; D_h; H_b]$ 

 $[3mm; 0,25mm; 6,6\mu m]$ 

 $[H_a; L_{a1}; L_{a2}; L_{a3}]$ 

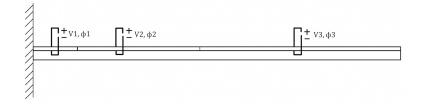
 $[1\mu m; 0,33mm; 0,87mm; 1,8mm]_{--}$ 


# Parámetros onda progresiva

#### Tabla: Parámetros onda progresiva para simulación.

| Parameter             | Value               | Description                                             |
|-----------------------|---------------------|---------------------------------------------------------|
| <i>c</i> <sub>0</sub> | 0                   | Amplitude coefficient of harmonic wave (m)              |
| C <sub>1</sub>        | $8,9 \cdot 10^{-3}$ | Linear amplitude coefficient of fish wave (m)           |
| <i>c</i> <sub>2</sub> | -0,4938             | Quadratic amplitude coefficient of Carangiform wave (m) |
| f                     | 30                  | Frequency of the wave (Hz)                              |
| $\lambda$             | $4,5 \cdot 10^{-3}$ | Wavelength (m)                                          |




#### **Excitación**



| Actuador | Voltaje (V)          | Desfase (rad)    |
|----------|----------------------|------------------|
| Piezo 1  | $4,27 \cdot 10^{-3}$ | $\frac{4\pi}{5}$ |
| Piezo2   | $1,43 \cdot 10^{-2}$ | $\frac{5}{3\pi}$ |
| Piezo 3  | $3 \cdot 10^{-2}$    |                  |



#### **Excitación**



| Actuador | Voltaje (V)             | Desfase (rad)               |
|----------|-------------------------|-----------------------------|
| Piezo 1  | $4,27 \cdot 10^{-3}$    | $\frac{4\pi}{5}$            |
| Piezo2   | 1,43 · 10 <sup>-2</sup> | $\frac{\overline{5}}{3\pi}$ |
| Piezo 3  | 3 · 10 <sup>-2</sup>    | $\pi$                       |



Introducción Flagelo plano Alternativas bajo estudio Lo que queda por hacer Actuación distribuida I: Segmentos sólido rígido Actuación distribuida II: Deformación continua Actuación local I: 1 punto de actuación Actuación local I: 2 puntos de actuación



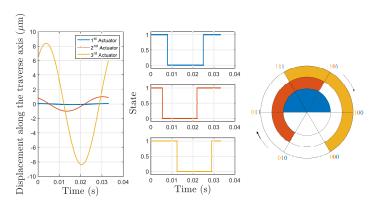



Figura: Movimiento no recíproco.



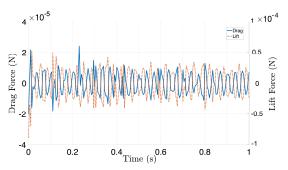



Figura: Drag and Lift: real motion.



#### **Movement of ABF**

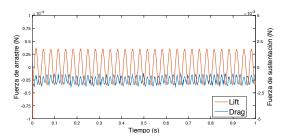



Figura: Drag and Lift: ideal motion.



Introducción Flagelo plano Alternativas bajo estudio Lo que queda por hacer Actuación distribuida I: Segmentos sólido rígido Actuación distribuida II: Deformación continua Actuación local I: 1 punto de actuación Actuación local I: 2 puntos de actuación



Introducción Flagelo plano Alternativas bajo estudio Lo que queda por hacer Actuación distribuida I: Segmentos sólido rígido Actuación distribuida II: Deformación continua Actuación local I: 1 punto de actuación Actuación local I: 2 puntos de actuación



#### **Robot**



Figura: Dispositivo experimental.



#### Modelado entorno

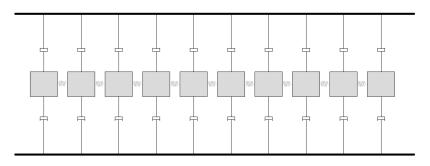



Figura: Esquema del modelo para simulación en fluidos.



#### Modelado entorno - Detalle

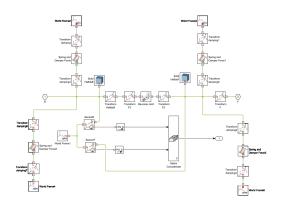



Figura: Implementación de modelo para simulación de fuerzas viscosas.



Actuación distribuida I: Segmentos sólido rígido Actuación distribuida II: Deformación continua Actuación local I: 1 punto de actuación Actuación local I: 2 puntos de actuación

# **Resultados experimentales**

Excitación onda cuadrada 3 Hz

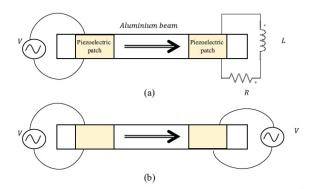


Actuación distribuida I: Segmentos sólido rígido Actuación distribuida II: Deformación continua Actuación local I: 1 punto de actuación Actuación local I: 2 puntos de actuación

# **Resultados experimentales**

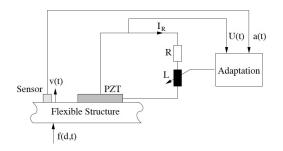
Excitación onda senoidal 3 Hz




Actuación distribuida I: Segmentos sólido rígido Actuación distribuida II: Deformación continua Actuación local I: 1 punto de actuación Actuación local I: 2 puntos de actuación

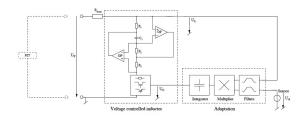
# **Resultados experimentales**

Excitación onda senoidal 10 Hz




### Actuación local I: 2 puntos de actuación






### Actuación local I: 2 puntos de actuación





### Actuación local I: 2 puntos de actuación





# **Algunas conclusiones**

- Experimentos y ajustes
- Simulador sistema cardiovascular
- Selección de tecnología
- Estrategias de control y navegación
- Miniaturización MEMS (Delft University of Technology)
- Diseño de microrrobot



Introducción Flagelo plano Alternativas bajo estudio Lo que queda por hacer

# Agradecimientos

Proyecto: Control of Flexible Robots Under External Forces. Application to Force Sensors and Systems for Robot Positioning and Propulsion in Fluids. (DPI2016-80547-R, Ministerio de Economía, Industria y Competitividad)





# **Agradecimientos**

Ayuda: GR15178 (Junta de Extremadura)





UNED – E.T.S. de Ingeniería Informática Departamento de Informática y Automática

